Evaluation of the Use of Eye and Head Movements for Mouse-like Functions by Using IOM Device

  • Andréia Sias RodriguesEmail author
  • Vinicius da Costa
  • Márcio Bender Machado
  • Angélica Lacerda Rocha
  • Joana Marini de Oliveira
  • Marcelo Bender Machado
  • Rafael Cunha Cardoso
  • Cleber Quadros
  • Tatiana Aires Tavares
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9738)


This paper describes a process of assistive technology evaluation using the eye and head movements as a CHI - Computer Human Interaction. In order to collect the data, it was used the Glasses Mouse Interface (IOM - Interface Óculos Mouse), device in development at the Federal Institute of Science, Education and Technology (IFSUL) which has been evaluated according to principles of user experience and usability testing.


Accessibility Assistive technologies Computer human interaction Glasses mouse Assistive technologies evaluation 


  1. 1.
    Kwan, C., Paquette, I., Magee, J.J., Lee, P.Y., Betke, M.: Click control: improving mouse interaction for people with motor impairments. In: The Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS 2011), pp. 231–232. ACM, New York (2011)Google Scholar
  2. 2.
    Martins, J.M.S., Rodrigues, J.M.F., Martins, J.A.C.: Low-cost natural interface based on head movements. Procedia Comput. Sci. 67, 312–321 (2015)CrossRefGoogle Scholar
  3. 3.
    Hakonen, M., Piitulainen, H., Visala, A.: Current state of digital signal processing in myoelectric interfaces and related applications. Biomed. Signal Process. Control 18, 334–359 (2015)CrossRefGoogle Scholar
  4. 4.
    Naves Jr., E., Pino, P., Losson, E., Andrade, A.: Alternative communication systems for people with severe motor disabilities: a survey. BioMedical Engineering OnLine 2011Google Scholar
  5. 5.
    Feng, W., Chen, M., Betke, M.: Target reverse crossing: a selection method for camera-based mouse-replacement systems. In: PETRA 2014: Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments, May 2014Google Scholar
  6. 6.
    Kurauchi, A., Feng, W., Morimoto, C., Betke, M.: HMAGIC: head movement and gaze input cascaded pointing. In: PETRA 2015: Proceedings of the 8th ACM International Conference on PErvasive Technologies Related to Assistive Environments, June 2015Google Scholar
  7. 7.
    Huo, X.: Tongue drive: a wireless tongue-operated assistive technology for people with severe disabilities, 03 November 2011. Accessed 02 Dec 2015
  8. 8.
    Ossmann, R., Thaller, D., Nussbaum, G., Pühretmair, F., Veigl, C., Weiß, C., Morales, B., Diaz, U.: AsTeRICS, a flexible assistive technology construction set. Original Res. Art. Procedia Comput. Sci. 14, 1–9 (2012)CrossRefGoogle Scholar
  9. 9.
    Vickers, S., Istance, H., Hyrskykari, A.: Performing locomotion tasks in immersive computer games with an adapted eye-tracking interface. ACM Trans. Access. Comput. 5(1), Article 2, 33 p. (2013)Google Scholar
  10. 10.
    Su, M., Yeh, C., Hsieh, Y., Lin, S., Wang, P.: An image-based mouth switch for people with severe disabilities. Recent Pat. Comput. Sci. 5, 66–71 (2012)Google Scholar
  11. 11.
    Zhu, D., Gedeon, T., Taylor, K.: Head or gaze? Controlling remote camera for hands-busy tasks in teleoperation: a comparison. In: Proceedings of the 22Nd Conference of the Computer-Human Interaction Special Interest Group of Australia on Computer-Human Interaction, OZCHI 2010, pp. 300–303. ACM, New York (2010)Google Scholar
  12. 12.
    Perez-Maldonado, C., Wexler, A., Joshi, S.: Two-dimensional cursor-to-target control from single muscle site sEMG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 203–209 (2010)CrossRefGoogle Scholar
  13. 13.
    Biswas, P., Langdon, P.: Multimodal intelligent eye-gaze tracking system. Int. J. Hum.-Comput. Int. 31(4), 277–294 (2015)CrossRefGoogle Scholar
  14. 14.
    Azmi, A., Alsabhan, N.M., AlDosari, M.S.: The wiimote with SAPI: creating an accessible low-cost, human computer interface for the physically disabled. IJCSNS Int. J. Comput. Sci. Netw. Secur. 9(12), 63–68 (2009)Google Scholar
  15. 15.
    Nguyen, V.T.: Enhancing touchless interaction with the leap motion using a haptic glove. Comput. Sci. (2014) Google Scholar
  16. 16.
    Su, M.C. et al.: Assistive systems for disabled persons and patients with parkinson’s disease. Lecture Notes on Wireless Healthcare Research: 105Google Scholar
  17. 17.
    Manresa-Yee, C., Varona, J., Perales, F.J., Salinas, I.: Design Recommendations for Camera-Based Head-Controlled Interfaces that Replace the Mouse for Motion-Impaired Users. Springer-Verlag, Berlin Heidelberg (2013)Google Scholar
  18. 18.
    Montanini, L., Cippitelli, E., Gambi, E., Spinsante, S.: Low complexity head tracking on portable android devices for real time message composition. Received: 1 April 2014 / Accepted: 25 February 2015 / Published online: 8 March 2015 © OpenInterface Association 2015Google Scholar
  19. 19.
    Machado, M.B., Colares, A., Quadros, C., Carvalho, F., Sampaio, A.: Oculos Mouse: Mouse Controlado pelos movimentos da cabeca do usuario, Brazilian Patent INPI n. PI10038213, Brazil (2010)Google Scholar
  20. 20.
    Brade, A.N.: Shaping Web Usability, 304 p.. Addison-Wesley, Boston (2002)Google Scholar
  21. 21.
    Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Mensch and Computer 2003, pp. 187–196. Vieweg + Teubner VerlagGoogle Scholar
  22. 22.
    World Health Organisation. World Report on Disability. Geneva: World Health Organisation (2011). Accessed on 20 July 2015
  23. 23.
    Betke, M., Gips, J., Fleming, P.: The camera mouse: visual tracking of body features to provide compute access for people with severe disabilities. IEEE Trans. Neural Syst. Rehabil. Eng. 10(1), 1–10 (2002)CrossRefGoogle Scholar
  24. 24.
    Alonso-Valerdi, L.M., Salido-Ruiz, R.A., Ramirez-Mendoza, R.A.: Motor imagery based brain–computer interfaces: an emerging technology to rehabilitate motor deficits. In: Original Research Article. Neuropsychologia, In Press, Corrected Proof, Available online 14 September 2015Google Scholar
  25. 25.
    Feng, W., Chen, M., Betke, M.: Target reverse crossing: a selection method for camera-based mouse-replacement systems. In: PETRA 2014: Proceedings of the 7th International Conference on PErvasive Technologies Related to Assistive Environments, May 2014Google Scholar
  26. 26.
    Perini, E., Soria, S., Prati, A., Cucchiara, R.: FaceMouse: a human-computer interface for tetraplegic people. In: Huang, T.S., Sebe, N., Lew, M., Pavlović, V., Kölsch, M., Galata, A., Kisačanin, B. (eds.) ECCV 2006 Workshop on HCI. LNCS, vol. 3979, pp. 99–108. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Kjeldsen, R.: Improvements in vision-based pointer control. In: Proceedings of ACM SIGACCESS Conference on Computers and Accessibility, pp. 189–196. ACM Press (2006)Google Scholar
  28. 28.
    Kjeldsen, R., Hartman, J.: Design issues for vision-based computer interaction systems. In: Perceptual User Interfaces 2001, Orlando, Fla (2001)Google Scholar
  29. 29.
    Missimer, E., Betke, M.: Blink and wink detection for mouse pointer control. In: Makedon, F., Maglogiannis, I, Kapidakis, S. (eds.) Proceedings of the 3rd International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2010). ACM, New York, Article 23, 8 p. (2010). doi:
  30. 30.
    Goncalves, C., Padilha Lanari Bo, A., Richay, R.: Tracking Head Movement for Augmentative and Alternative CommunicationGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andréia Sias Rodrigues
    • 1
    • 2
    Email author
  • Vinicius da Costa
    • 1
    • 2
  • Márcio Bender Machado
    • 1
    • 2
  • Angélica Lacerda Rocha
    • 2
  • Joana Marini de Oliveira
    • 2
  • Marcelo Bender Machado
    • 2
  • Rafael Cunha Cardoso
    • 1
    • 2
  • Cleber Quadros
    • 2
  • Tatiana Aires Tavares
    • 1
  1. 1.Pós Graduação em Ciências da ComputaçãoUniversidade Federal de Pelotas (UFPel)PelotasBrazil
  2. 2.South Rio-Grandese Federal Institute for Education, Science and TechnologyPelotasBrazil

Personalised recommendations