Developing a System for Post-Stroke Rehabilitation: An Exergames Approach

  • Arsénio Reis
  • Jorge Lains
  • Hugo ParedesEmail author
  • Vitor Filipe
  • Catarina Abrantes
  • Fernando Ferreira
  • Romeu Mendes
  • Paula Amorim
  • João Barroso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9739)


Stroke episodes are a major health issue worldwide for which most patients require an initial period of special rehabilitation and functional treatment, involving medical doctors and specialized therapists, followed by ambulatory physiotherapy exercise. In this second period most do not fulfil the prescribed recovery plan, resulting in setbacks in their recovery. This paper reports on the design of a methodology to develop a system to support the ambulatory rehabilitation therapy, providing constant feedback to the clinicians, by means of an information system platform, and maintaining the patient motivation by using an exergames approach to design and deliver the therapy exercises to the patient.


Stroke rehabilitation Motor therapy Body motion analysis 



This work is funded by: Project “NORTE-01-0145-FEDER-000016” is financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).


  1. 1.
    WORLD HEALTH ORGANIZATION Stroke, Cerebrovascular accident (2015). ( (Accessed on January 2015)
  2. 2.
    Lozano, R., Naghavi, M., Foreman, K., et al.: Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012(380), 2095–2128 (2012). [PubMed: 23245604]CrossRefGoogle Scholar
  3. 3.
    Murray, C.J.L., Vos, T., Lozano, R., et al.: Disability-adjusted life-years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012(380), 2197–2223 (2010). [PubMed: 23245608]Google Scholar
  4. 4.
    Feigin, V.L., Lawes, C.M., Bennett, D.A., Barker-Collo, S.L., Parag, V.: Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol. 2009(8), 355–369 (2009). [PubMed: 19233729]CrossRefGoogle Scholar
  5. 5.
    Pricewaterhouse Coopers Health Research Institute: Behind the Numbers. In: Medical cost trends for 2009Google Scholar
  6. 6.
    Garcia, J.A., Navarro, K.F., Schoene, D., Smith, S.T., Pisan, Y.: Exergames for the elderly: Towards an embedded Kinect-based clinical test of falls risk. In: Studies in Health Technology and Informatics, vol. 178. Health Informatics: Building a Healthcare Future Through Trusted Information (2012)Google Scholar
  7. 7.
    Zhang, F., Kaufman, D.: Physical and cognitive impacts of digital games on older adults a meta-analytic review. J. Appl. Gerontology, 0733464814566678 (2015)Google Scholar
  8. 8.
    Marcus, B.H., Nigg, C.R., Riebe, D., Forsyth, L.H.: Interactive communication strategies: implications for population-based physical-activity promotion. Am. J. Prev. Med. 19, 121–126 (2000)CrossRefGoogle Scholar
  9. 9.
    von Bruhn Hinné, T., Keates, S.: Using motion-sensing remote controls with older adults. In: Stephanidis, C. (ed.) Universal Access in HCI, Part II, HCII 2011. LNCS, vol. 6766, pp. 166–175. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Vaghetti, C.A.O., Botelho, S.S.d.C.: Virtual learning environments in physical education: a review of the use of Exergames. Ciências Cognição 15, 76–88 (2010)Google Scholar
  11. 11.
    Larsen, L.H., Schou, L., Lund, H.H., Langberg, H.: The physical effect of exergames in healthy elderly—a systematic review. Games Health J. Res. Dev. Clin. Appl. 2(4), 205–212 (2013)CrossRefGoogle Scholar
  12. 12.
    Webster, D., Celik, O.: Systematic review of Kinect applications in elderly care and stroke rehabilitation. Assessment 23, 26 (2014)Google Scholar
  13. 13.
    Lohse, K.R., Hilderman, C.G., Cheung, K.L., Tatla, S., Van der Loos, H.M.: Virtual reality therapy for adults post-stroke: a systematic review and meta-analysis exploring virtual environments and commercial games in therapy. PLoS ONE 9(3), e93318 (2014)CrossRefGoogle Scholar
  14. 14.
    Lohse, K., Shirzad, N., Verster, A., Hodges, N., Van der Loos, H.M.: Video games and rehabilitation: using design principles to enhance engagement in physical therapy. J. Neurologic Phy. Ther. 37(4), 166–175 (2013)CrossRefGoogle Scholar
  15. 15.
    Hendrikx, M., Meijer, S., Van Der Velden, J., Iosup, A.: Procedural content generation for games: a survey. ACM Trans. Multimedia Comput. Commun. Appl. (ACM TOMCCAP), 9(1) (2013)Google Scholar
  16. 16.
    Dormans, J.: Level design as model transformation: a strategy for automated content generation. In: Proceedings of the 2nd International Workshop on Procedural Content Generation in Games (PCGames 2011) (2011)Google Scholar
  17. 17.
    Lopes, R., Bidarra, R.: Adaptivity challenges in games and simulations: a survey. IEEE Trans. Comput. Intell. AI Games 3(2), 85–99 (2011). doi: 10.1109/TCIAIG.2011.2152841 CrossRefGoogle Scholar
  18. 18.
    Hondaori, H.M., Khademi, M.: A review on technical and clinical impact of Microsoft Kinect on physical therapy and rehabilitation. J. Med. Eng. (in Press).
  19. 19.
    Webster, D., Celik, O.: Systematic review of Kinect applications in elderly care and stroke rehabilitation. J. NeuroEng. Rehabil. 11, 108 (2014)CrossRefGoogle Scholar
  20. 20.
    Lukosch, H., van Ruijven, T., Verbraeck, A.: The participatory design of a simulation training game. In: Proceedings of the Winter Simulation Conference, p. 142 (2012)Google Scholar
  21. 21.
    Pereira, L.L., Roque, L.: Towards a game experience design model centered on participation. In: CHI 2012 Extended Abstracts on Human Factors in Computing Systems, pp. 2327–2332. ACM (2012)Google Scholar
  22. 22.
    Veerbeek, J.M., van Wegen, E., van Peppen, R., Jan, P., van der Wees, E., Hendriks, M.R., Kwakkel, G.: What is the evidence for physical therapy poststroke? a systematic review and meta-analysis. PLOS One 9 (2014)Google Scholar
  23. 23.
    Lewis, J.R.: IBM computer usability satisfaction questionnaires: psychometric evaluation and instructions for use. Int. J. Hum.-Comput. Interact. 7(1), 57–78 (1995)CrossRefGoogle Scholar
  24. 24.
    Naghdi, S., Ansari, N.N., Mansouri, K., Hasson, S.: A neurophysiological and clinical study of Brunnstrom recovery stages in the upper limb following stroke. Brain Injury 24, 1372–1378 (2010)CrossRefGoogle Scholar
  25. 25.
    Mcculloch, K., Cook, E.W., Fleming, W.C., Novack, T.A., Taub, E.: A reliable test of upper extremity ADL function. Arch. Phys. Med. Rehabil. 69, 755 (1988)Google Scholar
  26. 26.
    Mathiowetz, V., Volland, G., Kashman, N., Weber, K.: Adult norms for the box and block test of manual dexterity. Am. J. Occup. Ther. 39, 386–391 (1985)CrossRefGoogle Scholar
  27. 27.
    Duncan, P.W., Wallace, D., Lai, S.M., Johnson, D., Embretson, S., Laster, L.J.: The stroke impact scale version 2.0 - Evaluation of reliability, validity, and sensitivity to change. Stroke; a journal of cerebral circulation 30, 2131–2140 (1999)CrossRefGoogle Scholar
  28. 28.
    Lyle, R.C.: A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int. J. Rehabil. Res. Internationale Zeitschrift fur Rehabilitationsforschung Revue internationale de recherches de readaptation 4, 483–492 (1981)CrossRefGoogle Scholar
  29. 29.
    Fugl-Meyer, A.R., Jaasko, L., Leyman, I., Olsson, S., Steglind, S.: The post-stroke hemiplegic patient. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31 (1975)Google Scholar
  30. 30.
    McHorney, C.A., Ware Jr, J.E., Lu, J.F., Sherbourne, C.D.: The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Med. Care 32, 40–66 (1994)CrossRefGoogle Scholar
  31. 31.
    Pekna, M., et al.: Stroke 43(10), 2819–2828 (2012)CrossRefGoogle Scholar
  32. 32.
    Arya, K.N., et al.: J Bodyw Mov Ther. 15(4), 528–537 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Daly, J.J., Ruff, R.L.: Sci. World J. 20(7), 2031–2045 (2007)CrossRefGoogle Scholar
  34. 34.
    Hosp, J.A., Luft, A.R.: Neural Plast. 2011, 871296 (2011)Google Scholar
  35. 35.
    Taub, E., Uswatte, G., Pidikiti, R.: Constraint-induced movement therapy: a new family of techniques with broad application to physical rehabilitation—a clinical review. J. Rehabil. Res. Dev. 36, 237–251 (1999)Google Scholar
  36. 36.
    Taub, E., Uswatte, G., Elbert, T.: New treatments in neuroRehabilitation founded on basic research. Nat. Rev. Neurosci. 3, 228–236 (2002)CrossRefGoogle Scholar
  37. 37.
    Feigin, V.L., et al.: Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet 383(9913), 245–254 (2014)CrossRefGoogle Scholar
  38. 38.
    Murray, C.J.L., Vos, T., Lozano, R., et al.: Disability-adjusted life-years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Arsénio Reis
    • 1
  • Jorge Lains
    • 5
  • Hugo Paredes
    • 2
    Email author
  • Vitor Filipe
    • 2
  • Catarina Abrantes
    • 4
  • Fernando Ferreira
    • 3
  • Romeu Mendes
    • 4
  • Paula Amorim
    • 5
  • João Barroso
    • 2
  1. 1.Universidade de Trás-os-Montes e Alto DouroVila RealPortugal
  2. 2.INESC TEC and Universidade de Trás-os-Montes e Alto DouroVila RealPortugal
  3. 3.2C2T/Universidade do MinhoGuimarãesPortugal
  4. 4.Research Center in Sports Sciences, Health and Human Development, CIDESD, GERON Research Community and Universidade de Trás-os-Montes e Alto DouroVila RealPortugal
  5. 5.CMRRC Rovisco-PaisTochaPortugal

Personalised recommendations