Advertisement

Super-Blocked Clauses

  • Benjamin Kiesl
  • Martina Seidl
  • Hans Tompits
  • Armin Biere
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)

Abstract

In theory and practice of modern SAT solving, clause-elimination procedures are essential for simplifying formulas in conjunctive normal form (CNF). Such procedures identify redundant clauses and faithfully remove them, either before solving in a preprocessing phase or during solving, resulting in a considerable speed up of the SAT solver. A wide number of effective clause-elimination procedures is based on the clause-redundancy property called blocked clauses. For checking if a clause C is blocked in a formula F, only those clauses of F that are resolvable with C have to be considered. Hence, the blocked-clauses redundancy property can be said to be local. In this paper, we argue that the established definitions of blocked clauses are not in their most general form. We introduce more powerful generalizations, called set-blocked clauses and super-blocked clauses, respectively. Both can still be checked locally, and for the latter it can even be shown that it is the most general local redundancy property. Furthermore, we relate these new notions to existing clause-redundancy properties and give a detailed complexity analysis.

Keywords

Conjunctive Normal Form Satisfying Assignment Satisfiability Problem Resolution Environment Quantify Boolean Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press, Amsterdam (2009)zbMATHGoogle Scholar
  2. 2.
    Vizel, Y., Weissenbacher, G., Malik, S.: Boolean satisfiability solvers and their applications in model checking. Proc. IEEE 103(11), 2021–2035 (2015)CrossRefGoogle Scholar
  3. 3.
    Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Satisfiability, pp. 825–885. IOS Press (2009)Google Scholar
  4. 4.
    Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: Felty, P.A., Middeldorp, A. (eds.) Automated Deduction - CADE-25. LNCS, vol. 9195, pp. 399–415. Springer, Switzerland (2015)CrossRefGoogle Scholar
  5. 5.
    Järvisalo, M., Biere, A., Heule, M.: Simulating circuit-level simplifications on CNF. J. Autom. Reasoning 49(4), 583–619 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 355–370. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Manthey, N., Philipp, T., Wernhard, C.: Soundness of inprocessing in clause sharing SAT solvers. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 22–39. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Heule, M.J.H., Biere, A.: Blocked clause decomposition. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR-19 2013. LNCS, vol. 8312, pp. 423–438. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Iser, M., Manthey, N., Sinz, C.: Recognition of nested gates in CNF formulas. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 255–271. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24318-4_19 CrossRefGoogle Scholar
  11. 11.
    Balyo, T., Fröhlich, A., Heule, M.J.H., Biere, A.: Everything you always wanted to know about blocked sets (but were afraid to ask). In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 317–332. Springer, Heidelberg (2014)Google Scholar
  12. 12.
    Chen, J.: Fast blocked clause decomposition with high quality (2015). CoRR abs/1507.00459Google Scholar
  13. 13.
    Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math. 96–97, 149–176 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 345–359. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based QBF solving by dynamic blocked clause elimination. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20 2015. LNCS, vol. 9450, pp. 418–433. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48899-7_29 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Benjamin Kiesl
    • 1
  • Martina Seidl
    • 2
  • Hans Tompits
    • 1
  • Armin Biere
    • 2
  1. 1.Institute for Information SystemsVienna University of TechnologyViennaAustria
  2. 2.Institute for Formal Models and VerificationJKU LinzLinzAustria

Personalised recommendations