Advertisement

Model Checking Parameterised Multi-token Systems via the Composition Method

  • Benjamin AminofEmail author
  • Sasha Rubin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)

Abstract

We study the model checking problem of parameterised systems with an arbitrary number of processes, on arbitrary network-graphs, communicating using multiple multi-valued tokens, and specifications from indexed-branching temporal logic. We prove a composition theorem, in the spirit of Feferman-Vaught [21] and Shelah [31], and a finiteness theorem, and use these to decide the model checking problem. Our results assume two constraints on the process templates, one of which is the standard fairness assumption introduced in the cornerstone paper of Emerson and Namjoshi [18]. We prove that lifting any of these constraints results in undecidability. The importance of our work is three-fold: (i) it demonstrates that the composition method can be fruitfully applied to model checking complex parameterised systems; (ii) it identifies the most powerful model, to date, of parameterised systems for which model checking indexed branching-time specifications is decidable; (iii) it tightly marks the borders of decidability of this model.

Keywords

Model Check Temporal Logic Atomic Proposition Label Transition System Finiteness Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdulla, P.A., Delzanno, G., Rezine, O., Sangnier, A., Traverso, R.: On the verification of timed ad hoc networks. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 256–270. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameterized model checking of token-passing systems. In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 262–281. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  3. 3.
    Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model checking of rendezvous systems. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 109–124. Springer, Heidelberg (2014)Google Scholar
  4. 4.
    Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Verification of asynchronous mobile-robots in partially-known environments. In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA 2015. LNCS, vol. 9387, pp. 185–200. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-25524-8_12 CrossRefGoogle Scholar
  5. 5.
    Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Automatic verification of multi-agent systems in parameterised grid-environments. In: AAMAS (2016)Google Scholar
  6. 6.
    Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of parameterized timed networks. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 375–387. Springer, Heidelberg (2015)Google Scholar
  7. 7.
    Aminof, B., Rubin, S., Zuleger, F.: On the expressive power of communication primitives in parameterised systems. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR-20 2015. LNCS, vol. 9450, pp. 313–328. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48899-7_22 CrossRefGoogle Scholar
  8. 8.
    Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Inf. Process. Lett. 22, 307–309 (1986)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge (2008)zbMATHGoogle Scholar
  10. 10.
    Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith, H., Widder, J.: Decidability of parameterized verification. Synth. Lect. Distrib. Comput. Theory 6(1), 1–170 (2015). M&CCrossRefGoogle Scholar
  11. 11.
    Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about networks with many identical finite state processes. Inf. Comput. 81, 13–31 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM TOPLAS 6(4), 632–646 (1984)CrossRefGoogle Scholar
  13. 13.
    Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decomposition. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 276–291. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Das, S.: Mobile agents in distributed computing: network exploration. Bull. EATCS 109, 54–69 (2013)Google Scholar
  15. 15.
    Demri, S., Poitrenaud, D.: Verification of infinite-state systems. In: Haddad, S., Kordon, F., Pautet, L., Petrucci, L. (eds.) Models and Analysis in Distributed Systems, Chap. 8, pp. 221–269. Wiley (2011)Google Scholar
  16. 16.
    Emerson, E.A., Kahlon, V.: Parameterized model checking of ring-based message passing systems. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 325–339. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Emerson, E.A., Kahlon, V.: Model checking guarded protocols. In: LICS, pp. 361–370. IEEE (2003)Google Scholar
  18. 18.
    Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL, pp. 85–94 (1995). Journal version: Int. J. Found. Comp. Sci. 14(4) (2003)Google Scholar
  19. 19.
    Emerson, E.A., Sistla, A.: Symmetry and model checking. In: CAV, pp. 463–478 (1993)Google Scholar
  20. 20.
    Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS, pp. 352–359. IEEE (1999)Google Scholar
  21. 21.
    Feferman, S., Vaught, R.L.: The first-order properties of algebraic systems. Fund. Math. 47, 57–103 (1959)MathSciNetzbMATHGoogle Scholar
  22. 22.
    German, S., Sistla, A.: Reasoning about systems with many processes. JACM 39(3), 675–735 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Combination methods for satisfiability and model-checking of infinite-state systems. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 362–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Herman, T.: Probabilistic self-stabilization. Inf. Process. Lett. 35(2), 63–67 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD, pp. 201–209 (2013)Google Scholar
  26. 26.
    Kosowski, A.: Time and Space-Efficient Algorithms for Mobile Agents in an Anonymous Network. Habilitation, U. Sciences et Technologies - Bordeaux I (2013)Google Scholar
  27. 27.
    Kranakis, E., Krizanc, D., Rajsbaum, S.: Computing with mobile agents in distributed networks. In: Rajasekaran, S., Reif, J. (eds.) Handbook of Parallel Computing: Models, Algorithms, and Applications. CRC Press (2007)Google Scholar
  28. 28.
    Rabinovich, A.: On compositionality and its limitations. ACM TOCL 8(1), 4 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Rubin, S.: Parameterised verification of autonomous mobile-agents in static but unknown environments. In: AAMAS, pp. 199–208 (2015)Google Scholar
  30. 30.
    Shamir, S., Kupferman, O., Shamir, E.: Branching-depth hierarchies. ENTCS 39(1), 65–78 (2003)zbMATHGoogle Scholar
  31. 31.
    Shelah, S.: The monadic theory of order. Ann. Math. 102, 379–419 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Suzuki, I.: Proving properties of a ring of finite-state machines. Inf. Process. Lett. 28(4), 213–214 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Technische Universität WienViennaAustria
  2. 2.Università di Napoli “Federico II”NaplesItaly

Personalised recommendations