Gen2sat: An Automated Tool for Deciding Derivability in Analytic Pure Sequent Calculi

  • Yoni ZoharEmail author
  • Anna Zamansky
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)


Gen2sat [1] is an efficient and generic tool that can decide derivability for a wide variety of propositional non-classical logics given in terms of a sequent calculus. It contributes to the line of research on computer-supported tools for investigation of logics in the spirit of the “logic engineering” paradigm. Its generality and efficiency are made possible by a reduction of derivability in analytic pure sequent calculi to SAT. This also makes Gen2sat a “plug-and-play” tool so it is compatible with any standard off-the-shelf SAT solver and does not require any additional logic-specific resources. We describe the implementation details of Gen2sat and an evaluation of its performance, as well as a pilot study for using it in a “hands on” assignment for teaching the concept of sequent calculi in a logic class for engineering practitioners.


Theorem Prover Sequent Calculus Paraconsistent Logic Code Coverage Logic Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Areces, C.E.: Logic engineering: the case of description and hybrid logics. Institute for Logic, Language and Computation (2000)Google Scholar
  3. 3.
    Avron, A.: Gentzen-type systems, resolution, tableaux. J. Autom. Reasoning 10(2), 265–281 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Avron, A., Konikowska, B., Zamansky, A.: Efficient reasoning with inconsistent information using C-systems. Inf. Sci. 296, 219–236 (2015)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baaz, M., Fermüller, C.G., Salzer, G., Zach, R.: Multlog 1.0: towards an expert system for many-valued logics. In: McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 226–230. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Carnielli, W., Coniglio, M.E., Marcos, J.: Logics of formal inconsistency. In: Gabbay, D.M., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 14, pp. 1–93. Springer, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Ciabattoni, A., Lahav, O., Spendier, L., Zamansky, A.: Automated support for the investigation of paraconsistent and other logics. In: Artemov, S., Nerode, A. (eds.) LFCS 2013. LNCS, vol. 7734, pp. 119–133. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Ciabattoni, A., Spendier, L.: Tools for the investigation of substructural and paraconsistent logics. In: Fermé, E., Leite, J. (eds.) JELIA 2014. LNCS, vol. 8761, pp. 18–32. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Comon-Lundh, H., Shmatikov, V.: Intruder deductions, constraint solving and insecurity decision in presence of exclusive OR. In: 2003 Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, pp. 271–280, June 2003Google Scholar
  10. 10.
    Cotrini, C., Gurevich, Y.: Basic primal infon logic. J. Logic Comput. 26(1), 117–141 (2013)zbMATHGoogle Scholar
  11. 11.
    da Costa, N.C.: Sistemas formais inconsistentes, vol. 3. Editora UFPR (1993)Google Scholar
  12. 12.
    Degtyarev, A., Voronkov, A.: The inverse method. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 179–272. MIT Press, Cambridge (2001)CrossRefGoogle Scholar
  13. 13.
    Gasquet, O., Herzig, A., Longin, D., Sahade, M.: LoTREC: logical tableaux research engineering companion. In: Beckert, B. (ed.) TABLEAUX 2005. LNCS (LNAI), vol. 3702, pp. 318–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Hoffmann, M., Iachelini, G.: Code coverage analysis for eclipse. In: Eclipse Summit Europe (2007)Google Scholar
  15. 15.
    Kawai, H.: Sequential calculus for a first order infinitary temporal logic. Math. Logic Q. 33(5), 423–432 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lahav, O., Zohar, Y.: SAT-based decision procedure for analytic pure sequent calculi. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 76–90. Springer, Heidelberg (2014)Google Scholar
  17. 17.
    Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. J. Satisfiability Boolean Mode. Comput. 7, 59–64 (2010)Google Scholar
  18. 18.
    Neto, A., Finger, M.: Effective prover for minimal inconsistency logic. In: Bramer, M. (ed.) Artificial Intelligence in Theory and Practice. IFIP, vol. 217, pp. 465–474. Springer US, London (2006)CrossRefGoogle Scholar
  19. 19.
    Neto, A., Finger, M.: Kems-a multi-strategy tableau prover. In: Proceedings of the VI Best MSc Dissertation/PhD Thesis Contest (CTDIA 2008), Salvador (2008)Google Scholar
  20. 20.
    Neto, A., Kaestner, C.A.A., Finger, M.: Towards an efficient prover for the paraconsistent logic C1. Electron. Notes Theoret. Comput. Sci. 256, 87–102 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ohlbach, H.J.: Computer support for the development and investigation of logics. Logic J. IGPL 4(1), 109–127 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent calculi for conditional logics. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 511–518. Springer, Heidelberg (2014)Google Scholar
  23. 23.
    Page, R.L.: Software is discrete mathematics. ACM SIGPLAN Not. 38, 79–86 (2003). ACMCrossRefGoogle Scholar
  24. 24.
    Tishkovsky, D., Schmidt, R.A., Khodadadi, M.: Mettel2: towards a tableau prover generation platform. In: PAAR@ IJCAR, pp. 149–162 (2012)Google Scholar
  25. 25.
    Zamansky, A., Farchi, E.: Teaching logic to information systems students: challenges and opportunities. In: Fourth International Conference on Tools for Teaching Logic, TTL (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Tel Aviv UniversityTel AvivIsrael
  2. 2.Haifa UniversityHaifaIsrael

Personalised recommendations