Advertisement

Open image in new window: A Resolution-Based Prover for Multimodal K

  • Cláudia Nalon
  • Ullrich Hustadt
  • Clare Dixon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)

Abstract

In this paper, we describe an implementation of a hyper-resolution-based calculus for the propositional basic multimodal logic, Open image in new window . The prover was designed to support experimentation with different combinations of refinements for its basic calculus: it is primarily based on the set of support strategy, which can then be combined with other refinements, simplification techniques and different choices for the underlying normal form and clause selection. The prover allows for both local and global reasoning. We show experimental results for different combinations of strategies and comparison with existing tools.

References

  1. 1.
    Areces, C., Gennari, R., Heguiabehere, J., Rijke, M.D.: Tree-based heuristics in modal theorem proving. In: Proceedings of ECAI 2000, pp. 199–203. IOS Press (2000)Google Scholar
  2. 2.
    Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the propositional modal logics K, KT, S4. J. Autom. Reasoning 24(3), 297–317 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Logic and Comput. 2(1), 5–30 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Goré, R., Olesen, K., Thomson, J.: Implementing tableau calculi using BDDs: BDDTab system description. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol. 8562, pp. 337–343. Springer, Heidelberg (2014)Google Scholar
  5. 5.
    Götzmann, D., Kaminski, M., Smolka, G.: Spartacus: a tableau prover for hybrid logic. Electr. Notes Theor. Comput. Sci. 262, 127–139 (2010)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Horrocks, I.R., Hustadt, U., Sattler, U., Schmidt, R.: Computational modal logic. In: Handbook of Modal Logic, pp. 181–245. Elsevier, Amsterdam (2006)Google Scholar
  7. 7.
    Kaminski, M., Tebbi, T.: InKreSAT: modal reasoning via incremental reduction to SAT. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 436–442. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Lee, R.C.T.: A completeness theorem and computer program for finding theorems derivable from given axioms. Ph.D. thesis, Berkeley (1967)Google Scholar
  10. 10.
    Massacci, F., Donini, F.M.: Design and results of TANCS- non-classical (modal) systems comparison. TABLEAUX 2000. LNCS, vol. 1847, pp. 52–56. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    McCune, W.W.: OTTER 3.0 reference manual and guide, 07 May 2007Google Scholar
  12. 12.
    Nalon, C., Dixon, C.: Anti-prenexing and prenexing for modal logics. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA 2006. LNCS (LNAI), vol. 4160, pp. 333–345. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. J. Algorithms 62, 117–134 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Nalon, C., Hustadt, U., Dixon, C.: A modal-layered resolution calculus for K. In: De Nivelle, H. (ed.) TABLEAUX 2015. LNCS, vol. 9323, pp. 185–200. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-24312-2_13 CrossRefGoogle Scholar
  15. 15.
    Nalon, C., Hustadt, U., Dixon, C.: KSP sources and benchmarks (2016). http://www.cic.unb.br/~nalon/#software
  16. 16.
    Pan, G., Sattler, U., Vardi, M.Y.: BDD-based decision procedures for the modal logic K. J. Appl. Non-Class. Logics 16(1–2), 169–208 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Patel-Schneider, P.F., Sebastiani, R.: A new general method to generate random modal formulae for testing decision procedures. J. Artif. Intell. Res. (JAIR) 18, 351–389 (2003)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Schulz, S.: Simple and efficient clause subsumption with feature vector indexing. In: Bonacina, M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 45–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Spaan, E.: Complexity of modal logics. Ph.D. thesis, University of Amsterdam (1993)Google Scholar
  20. 20.
    Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 292–297. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Wos, L., Robinson, G., Carson, D.: Efficiency and completeness of the set of support strategy in theorem proving. J. ACM 12, 536–541 (1965)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of BrasíliaBrasíliaBrazil
  2. 2.Department of Computer ScienceUniversity of LiverpoolLiverpoolUK

Personalised recommendations