Interval Temporal Logic Model Checking: The Border Between Good and Bad HS Fragments

  • Laura Bozzelli
  • Alberto Molinari
  • Angelo MontanariEmail author
  • Adriano Peron
  • Pietro Sala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)


The model checking problem has thoroughly been explored in the context of standard point-based temporal logics, such as LTL, CTL, and CTL\(^{*}\), whereas model checking for interval temporal logics has been brought to the attention only very recently.

In this paper, we prove that the model checking problem for the logic of Allen’s relations started-by and finished-by is highly intractable, as it can be proved to be \({{\mathrm{\mathbf {EXPSPACE}}}}\)-hard. Such a lower bound immediately propagates to the full Halpern and Shoham’s modal logic of time intervals (HS). In contrast, we show that other noteworthy HS fragments, namely, Propositional Neighbourhood Logic extended with modalities for the Allen relation starts (resp., finishes) and its inverse started-by (resp., finished-by), turn out to have—maybe unexpectedly—the same complexity as LTL (i.e., they are \({{\mathrm{\mathbf {PSPACE}}}}\)-complete), thus joining the group of other already studied, well-behaved albeit less expressive, HS fragments.


Model Check Kripke Structure Interval Extension Model Check Problem Model Check Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11), 832–843 (1983)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bozzelli, L., Molinari, A., Montanari, A., Peron, A., Sala, P.: Interval Temporal Logic Model Checking: the Border Between Good and Bad HS Fragments (2016).
  3. 3.
    Bresolin, D., Della Monica, D., Goranko, V., Montanari, A., Sciavicco, G.: The dark side of interval temporal logic: marking the undecidability border. Ann. Math. Artif. Intell. 71(1–3), 41–83 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bresolin, D., Goranko, V., Montanari, A., Sala, P.: Tableau-based decision procedures for the logics of subinterval structures over dense orderings. J. Logic Comput. 20(1), 133–166 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bresolin, D., Goranko, V., Montanari, A., Sciavicco, G.: Propositional interval neighborhood logics: expressiveness, decidability, and undecidable extensions. Ann. Pure Appl. Logic 161(3), 289–304 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2002)Google Scholar
  7. 7.
    Emerson, E.A., Halpern, J.Y.: “Sometimes” and “not never” revisited: on branching versus linear time temporal logic. J. ACM 33(1), 151–178 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 1–20. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Gottlob, G.: NP trees and Carnap’s modal logic. J. ACM 42(2), 421–457 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM 38(4), 935–962 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Harel, D.: Algorithmics: The Spirit of Computing. Wesley, Reading (1992)zbMATHGoogle Scholar
  12. 12.
    Lodaya, K.: Sharpening the undecidability of interval temporal logic. In: Kleinberg, R.D., Sato, M. (eds.) ASIAN 2000. LNCS, vol. 1961, pp. 290–298. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Lomuscio, A., Michaliszyn, J.: An epistemic Halpern-Shoham logic. In: IJCAI, pp. 1010–1016 (2013)Google Scholar
  14. 14.
    Lomuscio, A., Michaliszyn, J.: Decidability of model checking multi-agent systems against a class of EHS specifications. In: ECAI, pp. 543–548 (2014)Google Scholar
  15. 15.
    Lomuscio, A., Michaliszyn, J.: Model checking epistemic Halpern-Shoham logic extended with regular expressions. CoRR abs/1509.00608 (2015)Google Scholar
  16. 16.
    Lomuscio, A., Raimondi, F.: mcmas: a model checker for multi-agent systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 450–454. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Marcinkowski, J., Michaliszyn, J.: The undecidability of the logic of subintervals. Fundamenta Informaticae 131(2), 217–240 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Molinari, A., Montanari, A., Murano, A., Perelli, G., Peron, A.: Checking interval properties of computations. Acta Informatica (2015, accepted for publication)Google Scholar
  19. 19.
    Molinari, A., Montanari, A., Peron, A.: Complexity of ITL model checking: some well-behaved fragments of the interval logic HS. In: TIME, pp. 90–100 (2015)Google Scholar
  20. 20.
    Molinari, A., Montanari, A., Peron, A.: A model checking procedure for interval temporal logics based on track representatives. In: CSL, pp. 193–210 (2015)Google Scholar
  21. 21.
    Molinari, A., Montanari, A., Peron, A., Sala, P.: Model checking well-behaved fragments of HS: the (almost) final picture. In: KR (2016)Google Scholar
  22. 22.
    Moszkowski, B.: Reasoning about digital circuits. Ph.D. thesis, Dept. of Computer Science, Stanford University, Stanford, CA (1983)Google Scholar
  23. 23.
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)Google Scholar
  24. 24.
    Pratt-Hartmann, I.: Temporal prepositions and their logic. Artif. Intell. 166(1–2), 1–36 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Roeper, P.: Intervals and tenses. J. Philos. Logic 9, 451–469 (1980)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Schnoebelen, P.: Oracle circuits for branching-time model checking. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 790–801. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Venema, Y.: Expressiveness and completeness of an interval tense logic. Notre Dame J. Formal Logic 31(4), 529–547 (1990)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Laura Bozzelli
    • 1
  • Alberto Molinari
    • 2
  • Angelo Montanari
    • 2
    Email author
  • Adriano Peron
    • 3
  • Pietro Sala
    • 4
  1. 1.Technical University of Madrid (UPM)MadridSpain
  2. 2.University of UdineUdineItaly
  3. 3.University of Napoli “Federico II”NapoliItaly
  4. 4.University of VeronaVeronaItaly

Personalised recommendations