Effective Normalization Techniques for HOL

  • Max Wisniewski
  • Alexander Steen
  • Kim Kern
  • Christoph Benzmüller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)


Normalization procedures are an important component of most automated theorem provers. In this work we present an adaption of advanced first-order normalization techniques for higher-order theorem proving which have been bundled in a stand-alone tool. It can be used in conjunction with any higher-order theorem prover, even though the implemented techniques are primarily targeted on resolution-based provers. We evaluated the normalization procedure on selected problems of the TPTP using multiple HO ATPs. The results show a significant performance increase, in both speed and proving capabilities, for some of the tested problem instances.


  1. 1.
    Andrews, P.: Church’s type theory. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Stanford University, Spring (2014)Google Scholar
  2. 2.
    Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T., Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Benzmüller, C.: Higher-order automated theorem provers. In: Delahaye, D., Woltzenlogel Paleo, B. (eds.) All about Proofs, Proof for All. Mathematical Logic and Foundations, pp. 171–214. College Publications, London (2015)Google Scholar
  4. 4.
    Benzmüller, C., Brown, C., Kohlhase, M.: Cut-simulation, impredicativity. Log. Methods Comput. Sci. 5(1:6), 1–21 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Benzmüller, C., Paulson, L.C., Sultana, N., Theiß, F.: The higher-order prover LEO-II. J. Autom. Reason. 55(4), 389–404 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Kern, K.: Improved computation of CNF in higher-order logics. Bachelor thesis, Freie Universität Berlin (2015)Google Scholar
  9. 9.
    Niles, I., Pease, A.: Towards a standard upper ontology. In: Proceedings of the International Conference on Formal Ontology in Information Systems, pp. 2–9. ACM (2001)Google Scholar
  10. 10.
    Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL - A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  11. 11.
    Nonnengart, A., Rock, G., Weidenbach, C.: On generating small clause normal forms. In: Kirchner, C., Kirchner, H. (eds.) CADE 1998. LNCS (LNAI), vol. 1421, pp. 397–411. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, J., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, pp. 335–367. Gulf Professional Publishing, Houston (2001)CrossRefGoogle Scholar
  13. 13.
    Paulson, L.C.: A generic tableau prover and its integration with isabelle. J. Univers. Comput. Sci. 5(3), 73–87 (1999)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reason. 43(4), 337–362 (2009)CrossRefzbMATHGoogle Scholar
  15. 15.
    Sutcliffe, G., Benzmüller, C.: Automated reasoning in higher-order logic using the TPTP THF infrastructure. J. Formaliz. Reason. 3(1), 1–27 (2010)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Weidenbach, C., Gaede, B., Rock, G.: SPASS & FLOTTER version 0.42. In: McRobbie, M.A., Slaney, J.K. (eds.) Cade-13. LNCS, vol. 1104, pp. 141–145. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Wisniewski, M., Steen, A., Benzmüller, C.: The Leo-III project. In: Bolotov, A., Kerber, M. (eds.) Joint Automated Reasoning Workshop and Deduktionstreffen, p. 38 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Max Wisniewski
    • 1
  • Alexander Steen
    • 1
  • Kim Kern
    • 1
  • Christoph Benzmüller
    • 1
  1. 1.Department of Mathematics and Computer ScienceFreie Universität BerlinBerlinGermany

Personalised recommendations