Selecting the Selection

  • Kryštof Hoder
  • Giles Reger
  • Martin Suda
  • Andrei Voronkov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)

Abstract

Modern saturation-based Automated Theorem Provers typically implement the superposition calculus for reasoning about first-order logic with or without equality. Practical implementations of this calculus use a variety of literal selections and term orderings to tame the growth of the search space and help steer proof search. This paper introduces the notion of lookahead selection that estimates (looks ahead) the effect of selecting a particular literal on the number of immediate children of the given clause and selects to minimize this value. There is also a case made for the use of incomplete selection strategies that attempt to restrict the search space instead of satisfying some completeness criteria. Experimental evaluation in the Vampire theorem prover shows that both lookahead selection and incomplete selection significantly contribute to solving hard problems unsolvable by other methods.

References

  1. 1.
    Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selection and simplification. Revised version in the J. Log. Comput. 4(3), 217–247 (1994). Research Report MPI-I-91-208, Max-Planck-Institut für Informatik, 1991Google Scholar
  2. 2.
    Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Handbook of Automated Reasoning, vol. I, chapter 2, pp. 19–99. Elsevier Science (2001)Google Scholar
  3. 3.
    Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as a desision. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 83–96. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  4. 4.
    Dershowitz, N., Plaisted, D.A.: Rewriting. In: Handbook of Automated Reasoning, vol. I, chapter 9, pp. 535–610. Elsevier Science (2001)Google Scholar
  5. 5.
    Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, 2–5 July, pp. 295–303. IEEE Computer Society (1999)Google Scholar
  6. 6.
    Knuth, D., Bendix, P.: Simple word problems in universal algebra. In: Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press (1970)Google Scholar
  7. 7.
    Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Handbook of Automated Reasoning, vol. I, chapter 7, pp. 371–443. Elsevier Science (2001)Google Scholar
  9. 9.
    Reger, G., Suda, M., Voronkov, A.: Playing with AVATAR. In: Reger, G., Suda, M., Voronkov, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 399–415. Springer, Switzerland (2015)CrossRefGoogle Scholar
  10. 10.
    Reger, G., Voronkov, A.: The Vampire manual. Technical report (2016, in preperation)Google Scholar
  11. 11.
    Schulz, S.: E – a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)MATHGoogle Scholar
  12. 12.
    Schulz, S.: E 1.8 User Manual (2015). http://wwwlehre.dhbw-stuttgart.de/sschulz/WORK/E_DOWNLOAD/V_1.9/eprover.pdf. Accessed 22 Jan 2016
  13. 13.
    Sekar, R., Ramakrishnan, I., Voronkov, A.: Term indexing. In: Handbook of Automated Reasoning, vol. II, chapter 26, pp. 1853–1964. Elsevier Science (2001)Google Scholar
  14. 14.
    Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving service (2012). https://www.starexec.org
  15. 15.
    Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom. Reason. 43(4), 337–362 (2009)CrossRefMATHGoogle Scholar
  16. 16.
    Sutcliffe, G., Suttner, C.: The state of CASC. AI Commun. 19(1), 35–48 (2006)MathSciNetMATHGoogle Scholar
  17. 17.
    Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Heidelberg (2014)Google Scholar
  18. 18.
    Weidenbach, C.: Combining superposition, sorts and splitting. In: Handbook of Automated Reasoning, vol. II, chapter 27, pp. 1965–2013. Elsevier Science (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kryštof Hoder
    • 1
    • 2
    • 3
  • Giles Reger
    • 1
  • Martin Suda
    • 1
  • Andrei Voronkov
    • 1
    • 2
    • 3
  1. 1.University of ManchesterManchesterUK
  2. 2.Chalmers University of TechnologyGothenburgSweden
  3. 3.EasyChairManchesterUK

Personalised recommendations