Advertisement

Subsumption Algorithms for Three-Valued Geometric Resolution

  • Hans de Nivelle
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9706)

Abstract

In an implementation of geometric resolution, the most costly operation is subsumption (or matching): One has to decide for a three-valued, geometric formula, whether this formula is false in a given interpretation. The formula contains only atoms with variables, equality, and existential quantifiers. The interpretation contains only atoms with constants.

Because the atoms have no term structure, matching for geometric resolution is a hard problem. We translate the matching problem into a generalized constraint satisfaction problem, and give an algorithm that solves it efficiently. The algorithm uses learning techniques, similar to clause learning in propositional logic. Secondly, we adapt the algorithm in such a way that it finds solutions that use a minimal subset of the interpretation.

The techniques presented in this paper may have applications in constraint solving.

Notes

Acknowledgment

We gratefully acknowledge that this work was supported by the Polish National Science Center (Narodowe Centrum Nauki) under grant number DEC-2011/03/B/ST6/00346.

References

  1. 1.
    Bezem, M., Coquand, T.: Automating coherent logic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 246–260. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    de Nivelle, H.: Classical logic with partial functions. J. Autom. Reasoning 47(4), 399–425 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    de Nivelle, H.: Theorem proving for classical logic with partial functions by reduction to Kleene logic. J. Logic Comput. (2014). (http://logcom.oxfordjournals.org/. April 2014)
  4. 4.
    de Nivelle, H.: Theorem proving for logic with partial functions by reduction to Kleene logic. In: Benzmüller, C., Otten, J. (eds.) VSL Workshop Proceedings of Automated Reasoning in Quantified Non-Classical Logics (ARQNL), pp. 71–85 (2014)Google Scholar
  5. 5.
    de Nivelle, H., Meng, J.: Geometric resolution: a proof procedure based on finite model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 303–317. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    de Nivelle, H., Meng, J.: Theorem prover Geo 2007f, September 2006. http://www.ii.uni.wroc.pl/~nivelle/
  7. 7.
    Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers, San Francisco (2003)zbMATHGoogle Scholar
  8. 8.
    Gottlob, G., Leitsch, A.: On the efficiency of subsumption algorithms. J. ACM 32(2), 280–295 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction algorithms. Mach. Learn. 55, 137–174 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Chap. 4, pp. 131–153. IOS Press (2009)Google Scholar
  11. 11.
    Murray, N., Rosenthal, E.: Signed formulas: a liftable meta-logic for multiple-valued logics. In: Komorowski, J., Raś, Z.W. (eds.) ISMIS 1993. LNCS, vol. 689, pp. 275–284. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  12. 12.
    Scheffer, T., Herbrich, R., Wysotzki, F.: Efficient \(\Theta \)-subsumption based on graph algorithms. In: Muggleton, S. (ed.) ILP 1996. LNCS(LNAI), vol. 1314, pp. 212–228. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Sutcliffe, G.: The CADE ATP system competition, August 2015. http://www.cs.miami.edu/~tptp/CASC/25/

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instytut Informatyki Uniwersytetu WrocławskiegoWrocławPoland

Personalised recommendations