# From Paraconsistent Logic to Dialetheic Logic

## Abstract

The only condition for a logic to be paraconsistent is to invalidate the so-called explosion. However, the understanding of the only connective involved in the explosion, namely negation, is not shared among paraconsistentists. By returning to the modern origin of paraconsistent logic, this paper proposes an account of negation, and explores some of its implications. These will be followed by a consideration on underlying logics for dialetheic theories, especially those following the suggestion of Laura Goodship. More specifically, I will introduce a special kind of paraconsistent logic, called *dialetheic* logic, and present a new system of paraconsistent logic, which is dialetheic, by expanding the Logic of Paradox of Graham Priest. The new logic is obtained by combining connectives from different traditions of paraconsistency, and has some distinctive features such as its propositional fragment being Post complete. The logic is presented in a Hilbert-style calculus, and the soundness and completeness results are established.

## Keywords

Classical Logic Unary Operation Classical Negation Falsity Condition Paraconsistent Logic## References

- 1.Arieli, O., & Avron, A. (1998). The value of the four values.
*Artificial Intelligence*,*102*, 97–141.CrossRefGoogle Scholar - 2.Avron, A. (1999). On the expressive power of three-valued and four-valued languages.
*Journal of Logic and Computation*,*9*, 977–994.CrossRefGoogle Scholar - 3.Batens, D. (1980). Paraconsistent extensional propositional logics.
*Logique et Analyse*,*90–91*, 195–234.Google Scholar - 4.Batens, D., & De Clercq, K. (2004). A rich paraconsistent extension of full positive logic.
*Logique et Analyse*,*185–188*, 227–257.Google Scholar - 5.Beall, J. C. (2009).
*Spandrels of truth*. Oxford: Oxford University Press.CrossRefGoogle Scholar - 6.Cantwell, J. (2008). The logic of conditional negation.
*Notre Dame Journal of Formal Logic*,*49*, 245–260.CrossRefGoogle Scholar - 7.Carnielli, W., Coniglio, M., & Marcos, J. (2007). Logics of formal inconsistency. In D. Gabbay & F. Guenthner (Eds.),
*Handbook of philosphical logic*(Vol. 14, pp. 1–93). Dordrecht: Springer.CrossRefGoogle Scholar - 8.Carnielli, W. & Marcos, J. (2002). A Taxonomy of C-systems. In W. A. Carnielli, M. E. Coniglio, & I. M. L. d’Ottaviano, (Eds.),
*Paraconsistency: the logical way to the inconsistent*, (pp. 1–94). New York: Marcel Dekker.Google Scholar - 9.Carnielli, W., Marcos, J., & de Amo, S. (2000). Formal inconsistency and evolutionary databases.
*Logic and Logical Philosophy*,*8*, 115–152.CrossRefGoogle Scholar - 10.Ciuciura, J. (2008). Frontiers of the discursive logic.
*Bulletin of the Section of Logic*,*37*(2), 81–92.Google Scholar - 11.da Costa, & Newton, C. A. (1974). On the theory of inconsistent formal systems.
*Notre Dame Journal of Formal Logic*,*15*, 497–510.Google Scholar - 12.de Michael, & Omori, H. (2015). Classical negation and expansions of BD.
*Studia Logica*,*103*(4), 825–851.Google Scholar - 13.d’Ottaviano, I. M. L. (1985).The completeness and compactness of a three-valued first-order logic.
*Revista Colombiana de Matemáticas*,*19*:77–94,Google Scholar - 14.d’Ottaviano, I. M. L., Newton C. A. & da Costa. (1970). Sur un problème de jaśkowski.
*Comptes Rendus de l’Academie de Sciences de Paris (A-B)*,*270*:1349–1353Google Scholar - 15.Goodship, L. (1996). On dialethism.
*Australasian Journal of Philosophy*,*74*(1), 153–161.CrossRefGoogle Scholar - 16.Horn, L. R., & Wansing, H. (2015). Negation. In E. N. Zalta (Ed.),
*The stanford encyclopedia of philosophy*. http://plato.stanford.edu/entries/negation/ (Spring 2015 edition). - 17.Jaśkowski, S. (1999). A propositional calculus for inconsistent deductive systems.
*Logic and Logical Philosophy*,*7*:35–56 (A new translation based on [?])Google Scholar - 18.Jaśkowski, S. (1999). On the discussive conjunction in the propositional calculus for inconsistent deductive systems.
*Logic and Logical Philosophy*,*7*, 57–59.CrossRefGoogle Scholar - 19.Kamide, N., & Wansing, H. (2012). Proof theory of nelson’s paraconsistent logic: a uniform perspective.
*Theoretical Computer Science*,*415*, 1–38.CrossRefGoogle Scholar - 20.Lenzen, W. (1996). Necessary conditions for negation operators. In Wansing, H. (Ed.),
*Negation: a notion in focus*, Perspective in Analytical Philosophy (pp. 37–58). Walter de Gruyter,Google Scholar - 21.Marcos, J. (2005). On negation: pure local rules.
*Journal of Applied Logic*,*3*, 185–219.CrossRefGoogle Scholar - 22.McCall, S. (2012). A history of connexivity. In D. M. Gabbay, F. Pelletier, & J. Woods (Eds.),
*Logic: a history of its central concepts*, Handbook of the history of logic, (Vol. 11, pp. 415–449). ElsevierGoogle Scholar - 23.Muskens, R. (1999). On partial and paraconsistent logics.
*Notre Dame Journal of Formal Logic*,*40*(3), 352–374.CrossRefGoogle Scholar - 24.Olkhovikov, G. (2001). On a new three-valued paraconsistent logic (in Russian). In
*Logic of Law and Tolerance*(pp. 96–113). Yekaterinburg: Ural State University PressGoogle Scholar - 25.Omori, Hitoshi. (2015). Remarks on naive set theory based on LP.
*The Review of Symbolic Logic*,*8*(2), 279–295.CrossRefGoogle Scholar - 26.Omori, H., & Sano, K. (2014). da Costa meets Belnap and Nelson. In R. Ciuni, H. Wansing, & C. Willkommen (Eds.),
*Recent Trends in Philosophical Logic*(pp. 145–166). Berlin: Springer.CrossRefGoogle Scholar - 27.Omori, H., & Sano, K. (2015). Generalizing Functional Completeness in Belnap-Dunn Logic.
*Studia Logica*,*103*(5), 883–917.CrossRefGoogle Scholar - 28.Omori, H., & Waragai, T. (2011). Some Observations on the Systems
**LFI1**and**LFI1**\(^\ast \).*Proceedings of Twenty-Second International Workshop on Database and Expert Systems Applications (DEXA2011)*(pp. 320–324)Google Scholar - 29.Omori, H. & Waragai, T. (2014). On the propagation of consistency in some systems of paraconsistent logic. In E. Weber, D. Wouters, & J. Meheus, (Eds.),
*Logic, reasoning and rationality*, (pp. 153–178). Heidelberg: SpringerGoogle Scholar - 30.Priest, G. (2002).
*Beyond the limits of thought*(2nd ed.). Oxford: Oxford University Press.CrossRefGoogle Scholar - 31.Priest, G. (2006).
*Doubt truth to be a liar*. Oxford: Oxford University Press.Google Scholar - 32.Priest, G. (2006).
*Contradiction*(2nd ed.). Oxford: Oxford University Press.CrossRefGoogle Scholar - 33.Priest, G. (2014).
*One*. Oxford: Oxford University Press.CrossRefGoogle Scholar - 34.Priest, G., & Routley, R. (1989). Systems of paraconsistent logic. In G. Priest, R. Routley, & J. Norman (Eds.),
*Paraconsistent logic: essays on the inconsistent*(pp. 151–186). Munich: PhilosophiaGoogle Scholar - 35.Pynko, A. P. (1999). Functional completeness and axiomatizability within Belnap’s four-valued logic and its expansions.
*Journal of Applied Non-Classical Logics*,*9*(1), 61–105.CrossRefGoogle Scholar - 36.Restall, G. (1992). A note on naive set theory in LP.
*Notre Dame Journal of Formal Logic*,*33*, 422–432.CrossRefGoogle Scholar - 37.Ruet, P. (1996). Complete set of connectives and complete sequent calculus for Belnap’s logic. Technical report, Ecole Normale Superieure,
*Logic Colloquium*96, Document LIENS-96-28.Google Scholar - 38.Słupecki, J. (1972). A criterion of fullness of many-valued systems of propositional logic.
*Studia Logica*,*30*, 153–157.CrossRefGoogle Scholar - 39.Tokarz, M. (1973). Connections between some notions of completeness of structural propositional calculi.
*Studia Logica*,*32*(1), 77–89.CrossRefGoogle Scholar - 40.Wansing, H. (2001). Negation. In L. Goble (Ed.),
*The blackwell guide to philosophical logic*(pp. 415–436). Cambridge: Basil Blackwell Publishers.Google Scholar - 41.Wansing, H. (2005). Connexive modal logic. In R. Schmidt, I. Pratt-Hartmann, M. Reynolds & H. Wansing, (Eds.),
*Advances in modal logic*(Vol. 5, pp. 367–383). London: King’s College PublicationsGoogle Scholar - 42.Wansing, H. (2014). Connexive logic. In E. N. Zalta (Ed.),
*The Stanford Encyclopedia of Philosophy*. http://plato.stanford.edu/archives/fall2014/entries/logic-connexive/ (Fall 2014 edition) - 43.Weber, Z. (2010). Transfinite numbers in paraconsistent set theory.
*The Review of Symbolic Logic*,*3*(1), 71–92.CrossRefGoogle Scholar - 44.Weber, Z. (2012). Transfinite cardinals in paraconsistent set theory.
*The Review of Symbolic Logic*,*5*(2), 269–293.CrossRefGoogle Scholar