Forensic Palynology and Environmental Profiling in Missing Persons Investigations

  • Tony Brown


Forensic palynology is the analysis of pollen and spores for forensic purposes, and it has been used in numerous missing persons cases. This chapter shows how forensic palynology has been, and can be used, and gives three case studies of its application. Two of these case studies are from the UK and one is from the United Nations missing persons investigations in Bosnia after the Yugoslavian war. The standard methodology and some current limitations are described. Although it can be used on its own, forensic palynology is often most effective as part of a broader environmental profiling approach which includes other geological and pedological (soils) information. Finally new developments in the field are highlighted.


Pollen analysis Forensic botany Crime scene Provenancing Criminology 



The work in this chapter by the author has been funded by a variety of bodies including the Forensic Sciences Service, Leicestershire Constabulary and the Leverhulme Trust. The diagrams were drawn by L. Ertl and the author must thank many colleagues for advice and assistance including R. Scaife, D. Pirrie and K. E. Barber.


  1. Barber, K. E. (1976). History of vegetation. In P. D. Moore & S. B. Chapman (Eds.), Methods in plant ecology. Oxford: Blackwell.Google Scholar
  2. Bertino, A. J. (2010). Forensic science: Fundamentals and investigations. Mason, OH: South-West Cengage Learning.Google Scholar
  3. Branch, N., Canti, M., Clark, P., & Turney, C. (2005). Environmental archaeology: Theoretical and practical approaches. London: Hodder Arnold.Google Scholar
  4. Brooks, J., & Shaw, G. (1978). Sporopollenin: A review of its chemistry, palaeochemistry and geochemistry. Grana, 17, 91–97.CrossRefGoogle Scholar
  5. Brown, A. G. (2000). Going to ground. Police Review, 18–20.Google Scholar
  6. Brown, A. G. (2006). The use of forensic botany and geology in war crimes investigations in NE Bosnia. Forensic Science International, 163, 204–210 (also papers by Bryant, Mildenhall and Wiltshire).CrossRefPubMedGoogle Scholar
  7. Brown, A. G. (2008). Environmental sampling. In M. Cox, I. Hanson, A. Flavel, J. Laver, & R. Wessling (Eds.), The scientific investigation of mass graves: Towards protocols and standard operating procedures (pp. 475–481). Cambridge: Cambridge University Press.Google Scholar
  8. Brown, A. G., Meadows, I., Turner, S. D., & Mattingley, D. (2001). Roman vineyards in Britain: Stratigraphic and palynological data from Wollaston in the Nene Valley, England. Antiquity, 75, 745–757.CrossRefGoogle Scholar
  9. Brown, A. G., Smith, A., & Elmhurst, O. (2002). The combined use of pollen and petrologic analyses in a search and subsequent murder investigation. Journal of Forensic Sciences, 47, 614–618.PubMedGoogle Scholar
  10. Bryant, V. M. (2000). Does pollen prove the Shroud authentic? Biblical Archaelogical Review, 26, 36–44.Google Scholar
  11. Bryant, V. M., & Jones, G. D. (2001). The R-values of honey: Pollen coefficients. Palynology, 25, 11–28.Google Scholar
  12. Bryant, V. M., & Jones, G. D. (2006). Forensic palynology: Current status of a rarely used technique in the United States of America. Forensic Science International, 22, 183–197.CrossRefGoogle Scholar
  13. Bryant, V. M., & Jones, G. D. (2009). Pollen—Nature's Tiny Clues. ASU—Ask A Biologist. Retrieved December 21, 2009, from
  14. Bryant, V. M., Jr., Jones, J. G., & Mildenhall, D. C. (1990). Forensic palynology in the United States of America. Palynology, 14, 193–208.CrossRefGoogle Scholar
  15. Giguet-Covex, C., Pansu, J., Arnaud, F., Rey, P.-J., Griggo, C., Gielly, L., et al. (2014). Long livestock farming history and human landscape shaping revealed by lake sediment DNA. Nature Communications. doi: 10.1038/ncomms4211.PubMedGoogle Scholar
  16. Havinga, A. J. (1984). A 20-year experimental investigation into the differential corrosion susceptibility of pollen and spores in various soil types. Pollen et Spores, 26, 541–558.Google Scholar
  17. Hawkesworth, D. L., & Wiltshire, P. E. J. (2011). Forensic mycology: The use of fungi in criminal investigations. Forensic Science International, 206, 1–11.CrossRefGoogle Scholar
  18. Hebert, P. D., Cywinska, A., Ball, S. L., & deWaardet, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London, Series B: Biological Sciences, 270, 313–326.CrossRefGoogle Scholar
  19. Herz, N., & Garrison, E. G. (1998). Geological methods for archaeology. New York: Oxford University Press.Google Scholar
  20. Horrock, M., Coulson, S. A., & Walsh, K. A. J. (1998). Forensic palynology: Variation in the pollen content of soil surface samples. Journal of Forensic Science, 43, 320–323.Google Scholar
  21. Horrocks, M., & Walsh, K. A. J. (1998). Walsh, forensic palynology: Assessing the value of the evidence. Review of Palaeobotany and Palynology, 103, 69–74.CrossRefGoogle Scholar
  22. Horrocks, M., & Walsh, K. A. J. (1999). Fine resolution of pollen patterns in limited space: Differentiating a crime scene and alibi scene seven meters apart. Journal of Forensic Science, 44, 417–420.Google Scholar
  23. Hüsken, A. D.-P. (2007). Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Research, 16, 557–569.CrossRefPubMedGoogle Scholar
  24. Jacobsen, G. L., & Bradshaw, R. H. W. (1980). The selection of sites for palaeovegetational study. Quaternary Research, 16, 80–96.CrossRefGoogle Scholar
  25. James, S. H., & Nordby, J. J. (2003). Forensic science: An introduction to scientific investigation techniques (2nd ed.). Boca Raton Florida: CRC.Google Scholar
  26. Jantunen, J., & Saarinen, K. (2011). Pollen transport by clothes. Aerobiologia, 27, 339–343.CrossRefGoogle Scholar
  27. Kraaijeveld, K., de Weger, L. A., Ventayol García, M., Buermans, H., Frank, J., Hiemstra, P. S., et al. (2015). Efficient and sensitive identification and quantification of airborne pollen using next-generation DNA sequencing. Molecular Ecology Resources, 15, 8–16.CrossRefPubMedGoogle Scholar
  28. Mildenhall, D. C. (1990). Forensic palynology in New Zealand. Palynology Review Palaeobotany, 64, 227–234.CrossRefGoogle Scholar
  29. Milne, L. A., Bryant, V. M., & Mildenhall, D. C. (2005). Forensic palynology. In H. M. Coyle (Ed.), Forensic botany: Principles and applications to criminal casework (pp. 218–251). New York: CRC.Google Scholar
  30. Moore, P. D., Webb, J. A., & Collinson, M. E. (1991). Pollen analysis (2nd ed.). Oxford: Blackwell Scientific.Google Scholar
  31. Morgan, R. M., & Bull, P. A. (2007). The philosophy, nature and practice of forensic sediment analysis. Progress and Physical Geography, 31, 1–16.CrossRefGoogle Scholar
  32. Nakagawa, T., Brugiapaglia, E., Digerfeldt, G., Reille, M., De Beaulieu, J.-L., & Yasuda, Y. (1998). Dense-media separation as a more efficient pollen extraction method for use with organic sediment/deposit samples: Comparison with the conventional method. Boreas, 27, 15–24.CrossRefGoogle Scholar
  33. Petersen, S., & Bryant, V. (2011). The study of pollen and its role in the honey market. American Bee Journal, 12, 591–594.Google Scholar
  34. Pye, K., & Croft, D. J. (2004). Forensic Geoscience. Geological Soc. Special Publication 232. (see especially chapters by Pye, Pirrie, Pye and Blott and Cameron).Google Scholar
  35. Rawlins, B. G., Kemp, S. J., Hodgkinson, E. H., Riding, J. B., Vane, C. H., Poulton, C., et al. (2006). Potential and pitfalls in establishing the provenance of earth-related samples in forensic investigations. Forensic Science International, 51, 832–845.Google Scholar
  36. Riding, J. B., Rawlins, B. G., & Coley, K. H. (2007). Changes in soil pollen assemblages on footwear worn at different sites. Palynology, 31, 135–151.CrossRefGoogle Scholar
  37. Rollo Ubaldi, M., Ermini, L., & Marota, I. (2002). Ötzi’s last meals: DNA analysis of the intestinal content of the Neolithic glacier mummy from the Alps. Proceedings of the National Academy of Sciences, 99, 12594–12599.CrossRefGoogle Scholar
  38. Rowell, L. (2009). Palynomorph retention on clothing under differing conditions. MSc Thesis: University of Western Australia.Google Scholar
  39. Ruffell, A., & McKinley, J. (2008). Geoforensics. Chichester: Wiley-Blackwell.CrossRefGoogle Scholar
  40. Ruffell, A., & Wiltshire, P. E. J. (2004). Conjunctive use of quantitative and qualitative X-ray diffraction analysis of soils and rocks for forensic analysis. Forensic Science International, 145, 13–23.CrossRefPubMedGoogle Scholar
  41. Solecki, R. S. (1975). Shanidar IV: A Neanderthal flower burial in northern Iraq. Science, 190, 880–881.CrossRefGoogle Scholar
  42. Sommer, J. D. (1999). The Shanidar IV ‘Flower Burial’: A reevaluation of neanderthal burial ritual. Cambridge Archaeological Journal, 9, 127–137.CrossRefGoogle Scholar
  43. Stanley, E. A. (1991). Forensic palynology (pp. 17–30). Washington, DC: Federal Bureau of Investigation International Symposium on Trace Evidence. US Government printing Office.Google Scholar
  44. Sugita, S. (1994). Pollen representation of vegetation in quaternary sediments: Theory and method in patchy vegetation. Journal of Ecology, 82, 881–897.CrossRefGoogle Scholar
  45. Sziber, R., Schubert, C., Schoning, R., Krause, D., & Wendt, U. (1998). Pollen analysis reveals murder season. Nature, 395, 449–450.CrossRefGoogle Scholar
  46. Taberlet, P., Coissac, E., Pompanon, F., Gielly, L., Miquel, C., Valentini, A., et al. (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research, 35(3), e14. doi: 10.1093/nar/gkl938.CrossRefPubMedGoogle Scholar
  47. Traverse, A. (1988). Palaeopalynology. Boston: Unwin Hyman.Google Scholar
  48. van Geel, B. (2001). Non-pollen palynomorphs. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), Tracking environmental change using lake sediments (Terrestrial, algal and silicaceous indicators, Vol. 3, pp. 99–119). Dordrecht: Kluwer.CrossRefGoogle Scholar
  49. Wiltshire, P. E. J. (2006). Consideration of some taphonomic variables of relevance to forensic palynological investigations in the United Kingdom. Forensic Science International, 163, 173–182.CrossRefPubMedGoogle Scholar
  50. Wiltshire, P. E. J., & Black, S. (2006). The cribriform approach to the retrieval of palynological evidence from the turbinates of murder victims. Forensic Science International, 163, 224–230.CrossRefPubMedGoogle Scholar
  51. Yoccoz, N. G., Brathen, K. A., Gielly, L., et al. (2012). DNA from soil mirrors plant taxonomic and growth form diversity. Molecular Ecology, 21, 3647–3655.CrossRefPubMedGoogle Scholar
  52. Zvada, M. S., McGraw, S. M., & Miller, M. A. (2007). The role of clothing fabrics as passive pollen collectors in the north‐eastern United States. Grana, 46, 285–291.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Forensic and Palaeoecology LaboratoryUniversity of SouthamptonSouthamptonUK

Personalised recommendations