Computability and Analysis, a Historical Approach

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9709)

Abstract

The history of computability theory and the history of analysis are surprisingly intertwined since the beginning of the twentieth century. For one, Émil Borel discussed his ideas on computable real number functions in his introduction to measure theory. On the other hand, Alan Turing had computable real numbers in mind when he introduced his now famous machine model. Here we want to focus on a particular aspect of computability and analysis, namely on computability properties of theorems from analysis. This is a topic that emerged already in early work of Turing, Specker and other pioneers of computable analysis and eventually leads us to the very recent project of classifying the computational content of theorems in the Weihrauch lattice.

References

  1. 1.
    Aberth, O.: The failure in computable analysis of a classical existence theorem for differential equations. Proc. Am. Math. Soc. 30, 151–156 (1971)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Avigad, J., Brattka, V.: Computability and analysis: the legacy of Alan Turing. In: Downey, R. (ed.) Turing’s Legacy: Developments from Turing’s Ideas in Logic, LNL, vol. 42, pp. 1–47. Cambridge University Press, Cambridge, UK (2014)CrossRefGoogle Scholar
  3. 3.
    Baigger, G.: Die Nichtkonstruktivität des Brouwerschen Fixpunktsatzes. Arch. Math. Logic 25, 183–188 (1985)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beeson, M.J.: Foundations of Constructive Mathematics. A Series of Modern Surveys in Mathematics. Springer, Berlin (1985)CrossRefMATHGoogle Scholar
  5. 5.
    Borel, É.: Le calcul des intégral définies. Journal de Mathematiques pures et appliquées 8(2), 159–210 (1912)MathSciNetMATHGoogle Scholar
  6. 6.
    Borel, É.: La théorie de la mesure et al théorie de l’integration. In: Leçons sur la théorie des fonctions, pp. 214–256. Gauthier-Villars, Paris, 4 edn. (1950)Google Scholar
  7. 7.
    Brattka, V.: Computability of Banach space principles. Informatik Berichte 286, FernUniversität Hagen, Fachbereich Informatik, Hagen, June 2001Google Scholar
  8. 8.
    Brattka, V.: Effective Borel measurability and reducibility of functions. Math. Logic Q. 51(1), 19–44 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brattka, V.: Computable versions of the uniform boundedness theorem. In: Chatzidakis, Z., et al. (eds.) Logic Colloquium 2002. LNL, vol. 27, pp. 130–151. ASL, Urbana (2006)Google Scholar
  10. 10.
    Brattka, V.: Borel complexity and computability of the Hahn-Banach Theorem. Arch. Math. Logic 46(7–8), 547–564 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Brattka, V.: A computable version of Banach’s inverse mapping theorem. Ann. Pure Appl. Logic 157, 85–96 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Brattka, V., de Brecht, M., Pauly, A.: Closed choice and a uniform low basis theorem. Ann. Pure Appl. Logic 163, 986–1008 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Brattka, V., Gherardi, G.: Effective choice and boundedness principles in computable analysis. Bull. Symbolic Logic 17(1), 73–117 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak computability. J. Symbolic Logic 76(1), 143–176 (2011)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Brattka, V., Gherardi, G., Hölzl, R.: Probabilistic computability and choice. Inf. Comput. 242, 249–286 (2015)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Brattka, V., Gherardi, G., Marcone, A.: The Bolzano-Weierstrass theorem is the jump of weak Kőnig’s lemma. Ann. Pure Appl. Logic 163, 623–655 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. In: Cooper, S.B., et al. (eds.) New Computational Paradigms: Changing Conceptions of What is Computable, pp. 425–491. Springer, New York (2008)CrossRefGoogle Scholar
  18. 18.
    Brattka, V., Le Roux, S., Pauly, A.: Connected choice and the Brouwer fixed point theorem. arXiv 1206.4809. http://arxiv.org/abs/1206.4809
  19. 19.
    Brattka, V., Presser, G.: Computability on subsets of metric spaces. Theor. Comput. Sci. 305, 43–76 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Brattka, V., Yoshikawa, A.: Towards computability of elliptic boundary value problems in variational formulation. J. Complex. 22(6), 858–880 (2006)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Gherardi, G., Marcone, A.: How incomputable is the separable Hahn-Banach theorem? Notre Dame Journal of Formal Logic 50(4), 393–425 (2009)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)MathSciNetMATHGoogle Scholar
  23. 23.
    Hertling, P.: An effective Riemann mapping theorem. Theor. Comput. Sci. 219, 225–265 (1999)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Hoyrup, M., Rojas, C., Weihrauch, K.: Computability of the Radon-Nikodym derivative. Computability 1(1), 3–13 (2012)MathSciNetMATHGoogle Scholar
  25. 25.
    Jockusch, C.G., Soare, R.I.: \(\Pi ^{0}_{1}\) classes and degrees of theories. Trans. Am. Math. Soc. 173, 33–56 (1972)MathSciNetMATHGoogle Scholar
  26. 26.
    Kleene, S.C.: Recursive functions and intuitionistic mathematics. In: Proceedings of the International Congress of Mathematicians, Cambridge, 1950, vol. 1, pp. 679–685. AMS, Providence (1952)Google Scholar
  27. 27.
    Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)CrossRefMATHGoogle Scholar
  28. 28.
    Kreisel, G.: On the interpretation of non-finitist proofs, II: interpretation of number theory, applications. J. Symbolic Logic 17, 43–58 (1952)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Lacombe, D.: Remarques sur les opérateurs récursifs et sur les fonctions récursives d’une variable réelle. C. R. Acad. Paris 241, 1250–1252, théorie des fonctions, November 1955Google Scholar
  30. 30.
    Lacombe, D.: Les ensembles récursivement ouverts ou fermés, et leurs applications à l’Analyse récursive. C. R. Acad. Paris 245, 1040–1043, logique (1957)Google Scholar
  31. 31.
    Le Roux, S., Ziegler, M.: Singular coverings and non-uniform notions of closed set computability. Math. Logic Q. 54(5), 545–560 (2008)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Metakides, G., Nerode, A.: The introduction of non-recursive methods into mathematics. In: Troelstra, A., van Dalen, D. (eds.) The L.E.J. Brouwer Centenary Symposium, pp. 319–335. North-Holland, Amsterdam (1982)Google Scholar
  33. 33.
    Metakides, G., Nerode, A., Shore, R.A.: Recursive limits on the Hahn-Banach theorem. In: Rosenblatt, M. (ed.) Errett Bishop: Reflections on Him and His Research. AMS, Providence (1985). Contemp. Math. vol. 39, pp. 85–91Google Scholar
  34. 34.
    Orevkov, V.P.: A constructive mapping of the square onto itself displacing every constructive point (Russian). Doklady Akademii Nauk 152, 55–58 (1963). Translated in: Soviet Math. - Dokl. vol. 4, pp. 1253–1256 (1963)MathSciNetMATHGoogle Scholar
  35. 35.
    Pauly, A.: How incomputable is finding Nash equilibria? J. Univers. Comput. Sci. 16(18), 2686–2710 (2010)MathSciNetMATHGoogle Scholar
  36. 36.
    Pauly, A.: On the (semi)lattices induced by continuous reducibilities. Math. Logic Q. 56(5), 488–502 (2010)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Pour-El, M.B., Richards, J.I.: A computable ordinary differential equation which possesses no computable solution. Ann. Math. Logic 17, 61–90 (1979)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Springer, Berlin (1989)CrossRefMATHGoogle Scholar
  39. 39.
    Rice, H.G.: Recursive real numbers. Proc. Am. Math. Soc. 5, 784–791 (1954)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Simpson, S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Cambridge University Press, Poughkeepsie (2009)CrossRefMATHGoogle Scholar
  41. 41.
    Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symbolic Logic 14(3), 145–158 (1949)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Specker, E.: Der Satz vom Maximum in der rekursiven Analysis. In: Heyting, A. (ed.) Constructivity in Mathematics, pp. 254–265. North-Holland, Amsterdam (1959)Google Scholar
  43. 43.
    Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Proc. London Math. Soc. 42(2), 230–265 (1937)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Correction Proc. London Math. Soc. 43(2), 544–546 (1938)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)CrossRefMATHGoogle Scholar
  46. 46.
    Zaslavskiĭ, I.D.: Disproof of some theorems of classical analysis in constructive analysis (Russian). Usp. Mat. Nauk 10(4), 209–210 (1955)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Computer ScienceUniversität der Bundeswehr MünchenMünchenGermany
  2. 2.Deptartment of Mathematics and Applied MathematicsUniversity of Cape TownCape TownSouth Africa

Personalised recommendations