A Direct Constructive Proof of a Stone-Weierstrass Theorem for Metric Spaces

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9709)

Abstract

We present a constructive proof of a Stone-Weierstrass theorem for totally bounded metric spaces (\(\mathrm {\mathbf {SWtbms}}\)) which implies Bishop’s Stone-Weierstrass theorem for compact metric spaces (\(\mathrm {\mathbf {BSWcms}}\)) found in [3]. Our proof has a clear computational content, in contrast to Bishop’s highly technical proof of \(\mathrm {\mathbf {BSWcms}}\) and his hard to motivate concept of a (Bishop-)separating set of uniformly continuous functions. All corollaries of \(\mathrm {\mathbf {BSWcms}}\) in [3] are proved directly by \(\mathrm {\mathbf {SWtbms}}\). We work within Bishop’s informal system of constructive mathematics \(\mathrm {BISH}\).

References

  1. 1.
    Banaschewski, B., Mulvey, C.J.: A constructive proof of the Stone-Weierstrass theorem. J. Pure Appl. Algebra 116, 25–40 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)MATHGoogle Scholar
  3. 3.
    Bishop, E., Bridges, D.: Constructive Analysis. Grundlehren der mathematischen Wissenschaften, vol. 279. Springer, New York (1985)MATHGoogle Scholar
  4. 4.
    Bridges, D.S.: Reflections on function spaces. Ann. Pure Appl. Logic 163(12), 101–110 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bridges, D.S., Vîţă, L.S.: Techniques of Constructive Analysis: Universitext. Springer, New York (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Bridges, D.S., Richman, F.: Varieties of Constructive Mathematics. Cambridge University Press, New York (1987)CrossRefMATHGoogle Scholar
  7. 7.
    Coquand, T.: A Constructive Analysis of the Stone-Weierstrass Theorem, Manuscript (2001)Google Scholar
  8. 8.
    Coquand, T.: About Stone’s notion of spectrum. J. Pure Appl. Algebra 197, 141–158 (2005)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Coquand, T., Spitters, B.A.W.: Constructive Gelfand duality for C\(^{*}\)-algebras. Math. Proc. Camb. Philos. Soc. 147(2), 339–344 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Dugundji, J.: Topology. Brown Publishers Wm. C, Dubuque (1989)MATHGoogle Scholar
  11. 11.
    Ishihara, H.: Two subcategories of apartness spaces. Ann. Pure Appl. Logic 163, 132–139 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ishihara, H.: Relating Bishop’s function spaces to neighborhood spaces. Ann. Pure Appl. Logic 164, 482–490 (2013)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ishihara, H., Mines, R., Schuster, P., Vîţă, L.S.: Quasi-apartness and neighborhood spaces. Ann. Pure Appl. Logic 141, 296–306 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Miculescu, R.: Approximations by Lipschitz functions generated by extensions. Real Anal. Exch. 28(1), 33–40 (2002)MathSciNetMATHGoogle Scholar
  15. 15.
    Petrakis, I.: Constructive Topology of Bishop Spaces, Ph.D. Thesis. Ludwig-Maximilians-Universität, München (2015)Google Scholar
  16. 16.
    Petrakis, I.: Completely regular Bishop spaces. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 302–312. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  17. 17.
    Petrakis, I.: The Urysohn extension theorem for Bishop spaces. In: Artemov, S., et al. (eds.) LFCS 2016. LNCS, vol. 9537, pp. 299–316. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27683-0_21 CrossRefGoogle Scholar
  18. 18.
    Tuominen, H.: Analysis in Metric Spaces, Lecture notes (2014)Google Scholar
  19. 19.

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of MunichMunichGermany

Personalised recommendations