Advertisement

Axiomatizing Analog Algorithms

  • Olivier Bournez
  • Nachum Dershowitz
  • Pierre Néron
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9709)

Abstract

We propose a formalization of generic algorithms that includes analog algorithms. This is achieved by reformulating and extending the framework of abstract state machines to include continuous-time models of computation. We prove that every hybrid algorithm satisfying some reasonable postulates may be expressed precisely by a program in a simple and expressive language.

Keywords

Hybrid System Analog Algorithm Function Symbol Infinitesimal Generator Discrete Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blum, L., Shub, M., Smale, S.: On a theory of computation and complexity over the real numbers; NP completeness, recursive functions and universal machines. Bull. Am. Math. Soc. 21, 1–46 (1989)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Boker, U., Dershowitz, N.: The Church-Turing thesis over arbitrary domains. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 199–229. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Boker, U., Dershowitz, N.: Three paths to effectiveness. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 135–146. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bournez, O., Campagnolo, M.L.: A survey on continuous time computations. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) Changing Conceptions of What is Computable, pp. 383–423. Springer, New York (2008)CrossRefGoogle Scholar
  5. 5.
    Bournez, O., Dershowitz, N., Falkovich, E.: Towards an axiomatization of simple analog algorithms. In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 525–536. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Bournez, O., Dershowitz, N., Néron, P.: Axiomatizing analog algorithms. ArXiv e-prints (2016). http://arxiv.org/abs/1604.04295
  7. 7.
    Bush, V.: The differential analyser. J. Franklin Inst. 212, 447–488 (1931)CrossRefMATHGoogle Scholar
  8. 8.
    Cohen, J., Slissenko, A.: On implementations of instantaneous actions real-time ASM by ASM with delays. In: Proceedings of 12th International Workshop on Abstract State Machines, Université de Paris, vol. 12, pp. 387–396 (2005)Google Scholar
  9. 9.
    Cohen, J., Slissenko, A.: Implementation of sturdy real-time abstract state machines by machines with delays. In: Proceedings of 6th International Conference on Computer Science and Information Technology, National Academy of Science of Armenia (2007)Google Scholar
  10. 10.
    Dershowitz, N., Gurevich, Y.: A natural axiomatization of computability and proof of Church’s Thesis. Bull. Symbolic Logic 14, 299–350 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fu, M.Q., Zucker, J.: Models of computation for partial functions on the reals. J. Log. Algebraic Methods Program. 84, 218–237 (2015)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Graça, D.S., Buescu, J., Campagnolo, M.L.: Computational bounds on polynomial differential equations. Appl. Math. Comput. 215, 1375–1385 (2009)MathSciNetMATHGoogle Scholar
  13. 13.
    Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals. J. Complex. 19, 644–664 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms. ACM Trans. Comput. Log. 1, 77–111 (2000)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Nyce, J.M.: Guest editor’s introduction. IEEE Ann. Hist. Comput. 18, 3–4 (1996)CrossRefGoogle Scholar
  17. 17.
    Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41, 143–189 (2008)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Reisig, W.: On Gurevich’s theorem on sequential algorithms. Acta Informatica 39, 273–305 (2003)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Rust, H.: Hybrid abstract state machines: using the hyperreals for describing continuous changes in a discrete notation. In: International Workshop on Abstract State Machines, Swiss Federal Institute of Technology, pp. 341–356 (2000)Google Scholar
  20. 20.
    Shannon, C.E.: Mathematical theory of the differential analyser. J. Math. Phys. 20, 337–354 (1941)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Suenaga, K., Hasuo, I.: Programming with infinitesimals: a While-language for hybrid system modeling. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 392–403. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Tucker, J.V., Zucker, J.I.: A network model of analogue computation over metric algebras. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 515–529. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Olivier Bournez
    • 1
  • Nachum Dershowitz
    • 2
  • Pierre Néron
    • 3
  1. 1.Laboratoire d’Informatique de l’X (LIX)École PolytechniquePalaiseauFrance
  2. 2.School of Computer ScienceTel Aviv UniversityRamat AvivIsrael
  3. 3.French Network and Information Security Agency (ANSSI)ParisFrance

Personalised recommendations