Towards Computational Complexity Theory on Advanced Function Spaces in Analysis

  • Akitoshi Kawamura
  • Florian Steinberg
  • Martin Ziegler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9709)

Abstract

Pour-El and Richards [PER89], Weihrauch [Weih00], and others have extended Recursive Analysis from real numbers and continuous functions to rather general topological spaces. This has enabled and spurred a series of rigorous investigations on the computability of partial differential equations in appropriate advanced spaces of functions. In order to quantitatively refine such qualitative results with respect to computational efficiency we devise, explore, and compare natural encodings (representations) of compact metric spaces: both as infinite binary sequences (TTE) and more generally as families of Boolean functions via oracle access as introduced by Kawamura and Cook ([KaCo10], Sect. 3.4). Our guide is relativization: Permitting arbitrary oracles on continuous universes reduces computability to topology and computational complexity to metric entropy in the sense of Kolmogorov. This yields a criterion and generic construction of optimal representations in particular of (subsets of) \(L^p\) and Sobolev spaces that solutions of partial differential equations naturally live in.

References

  1. [ACN07]
    Aehlig, K., Cook, S., Nguyen, P.: Relativizing small complexity classes and their theories. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 374–388. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. [BrCo06]
    Braverman, M., Cook, S.A.: Computing over the reals: foundations for scientific computing. Not. AMS 53(3), 318–329 (2006)MathSciNetMATHGoogle Scholar
  3. [Buss88]
    Buss, J.F.: Relativized alternation and space-bounded computation. J. Comput. Syst. Sci. 36, 351–378 (1988)MathSciNetCrossRefMATHGoogle Scholar
  4. [dBYa10]
    de Brecht, M., Yamamoto, A.: Topological properties of concept spaces. Inf. Comput. 208(4), 327–340 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. [CSV13]
    Chaudhuri, S., Sankaranarayanan, S., Vardi, M.Y.: Regular real analysis. In: Proceedings of 28th Annual IEEE Symposium on Logic in Computer Science (LiCS2013), pp. 509–518 (2013)Google Scholar
  6. [FeZi15]
    Férée, H., Ziegler, M.: On the Computational Complexity of Positive Linear Functionals on C[0;1]. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 489–504. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32859-1_42
  7. [FHHP15]
    Férée, H., Hainry, E., Hoyrup, M., Péchoux, R.: Characterizing polynomial time complexity of stream programs using interpretations. Theor. Comput. Sci. 595, 41–54 (2015)MathSciNetCrossRefMATHGoogle Scholar
  8. [GrKi14]
    Gregoriades, V., Kihara, T.: Recursion and effectivity in the decomposability conjecture. (2014, submitted). arXiv:1410.1052
  9. [Hert04]
    Hertling, P.: A BanachMazur computable but not Markov computable function on the computable real numbers. Ann. Pure Appl. Log. 132, 227–246 (2004)MathSciNetCrossRefMATHGoogle Scholar
  10. [KaCo96]
    Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM J. Comput. 25(1), 117–132 (1996)MathSciNetCrossRefMATHGoogle Scholar
  11. [KaCo10]
    Kawamura, A., Cook, S.A.: Complexity theory for operators in analysis. In: Proceedings of 42nd Annual ACM Symposium on Theory of Computing (STOC 2010); Full Version in ACM Transactions in Computation Theory, vol. 4 no. 2, article 5 (2012)Google Scholar
  12. [KaOt14]
    Kawamura, A., Ota, H.: Small complexity classes for computable analysis. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635, pp. 432–444. Springer, Heidelberg (2014)Google Scholar
  13. [KaPa15]
    Kawamura, A., Pauly, A.: Function spaces for second-order polynomial time. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds.) CiE 2014. LNCS, vol. 8493, pp. 245–254. Springer, Heidelberg (2014)Google Scholar
  14. [KMRZ15]
    Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Computational benefit of smoothness: parameterized bit-complexity of numerical operators on analytic functions and Gevrey’s hierarchy. J. Complex. 31(5), 689–714 (2015)CrossRefMATHGoogle Scholar
  15. [Ko91]
    Ko, K.-I.: Computational Complexity of Real Functions. Birkhäuser, Boston (1991)CrossRefMATHGoogle Scholar
  16. [Kohl08]
    Kohlenbach, U.: Applied Proof Theory. Springer, Heidelberg (2008)MATHGoogle Scholar
  17. [KORZ12]
    Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth differential equations. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 578–589. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. [KoTi59]
    Kolmogorov, A.N., Tikhomirov, V.M.: \(\cal {E}\)-Entropy and \({\cal {E}}\)-Capacity of Sets in Functional Spaces. Uspekhi Mat. Nauk 14(2), 3–86 (1959). also pp. 86–170 in Selected Works of A.N. Kolmogorov vol. III (Shiryayev, A.N. Ed.), Nauka (1993) and Springer (1987)MathSciNetMATHGoogle Scholar
  19. [KSZ14]
    Kawamura, A., Steinberg, F., Ziegler, M.: Complexity of Laplace’s and Poisson’s Equation. Bulletin of Symbolic Logic 20(2), 231 (2014). Full version in Mathem. Structures in Computer Science (2016)Google Scholar
  20. [PaZi13]
    Pauly, A., Ziegler, M.: Relative computability and uniform continuity of relations. J. Log. Anal. 5, 1–39 (2013)MathSciNetCrossRefMATHGoogle Scholar
  21. [PER89]
    Pour-El, M.B., Richards, I.: Computability in Analysis and Physics. Springer, Heidelberg (1989)CrossRefMATHGoogle Scholar
  22. [Schr95]
    Schröder, M.: Topological spaces allowing type-2 complexity theory. In: Workshop on Computability and Complexity in Analysis, Informatik-Berichte 190, FernUniversität Hagen (1995)Google Scholar
  23. [Schr04]
    Schröder, M.: Spaces allowing type-2 complexity theory revisited. Math. Logic Q. 50, 443–459 (2004)MathSciNetCrossRefMATHGoogle Scholar
  24. [Schr06]
    Schröder, M.: Admissible representations in computable analysis. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 471–480. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. [SZZ15]
    Sun, S.M., Zhong, N., Ziegler, M.: On the Computability of the Navier-Stokes Equation. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) Evolving Computability. LNCS, vol. 9136, pp. 334–342. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  26. [Weih00]
    Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  27. [Weih03]
    Weihrauch, K.: Computational complexity on computable metric spaces. Math. Log. Q. 49(1), 3–21 (2003)MathSciNetCrossRefMATHGoogle Scholar
  28. [WeZh02]
    Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers beat the turing machine? Proc. London Math. Soc. 85(2), 312–332 (2002)MathSciNetCrossRefMATHGoogle Scholar
  29. [Wils88]
    Wilson, C.B.: A measure of relativized space which is faithful with respect to depth. J. Comput. Syst. Sci. 36, 303–312 (1988)MathSciNetCrossRefMATHGoogle Scholar
  30. [Zieg07]
    Ziegler, M.: Real hypercomputation and continuity. Theory Comput. Syst. 41, 177–206 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Akitoshi Kawamura
    • 1
  • Florian Steinberg
    • 1
    • 2
  • Martin Ziegler
    • 2
    • 3
  1. 1.The University of TokyoTokyoJapan
  2. 2.TU DarmstadtDarmstadtGermany
  3. 3.KAISTDaejeonThe Republic of Korea

Personalised recommendations