Computability in Symbolic Dynamics

  • Emmanuel JeandelEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9709)


We give an overview of the interplay between computability and symbolic dynamics.


  1. [AS09]
    Aubrun, N., Sablik, M.: An order on sets of tilings corresponding to an order on languages. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, 26–28 February 2009, Freiburg, Germany, pp. 99–110 (2009)Google Scholar
  2. [AS13]
    Aubrun, N., Sablik, M.: Simulation of effective subshifts by two-dimensional subshifts of finite type. Acta Applicandae Math. 126, 35–63 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Ber64]
    Berger, R.: The undecidability of the domino problem. Ph.D. thesis, Harvard University (1964)Google Scholar
  4. [CDK08]
    Cenzer, D., Dashti, A., King, J.L.F.: Computable symbolic dynamics. Math. Log. Q. 54(5), 460–469 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. [CR98]
    Cenzer, D., Remmel, J.B.: \({\Pi }_1^0\) classes in mathematics. In: Handbook of Recursive Mathematics - Volume 2: Recursive Algebra, Analysis and Combinatorics, vol. 139, Studies in Logic and the Foundations of Mathematics, pp. 623–821. Elsevier (1998). Chap. 13Google Scholar
  6. [Das08]
    Dashti, A.: Effective symbolic dynamics. Ph.D. thesis, University of Florida (2008)Google Scholar
  7. [DRS10]
    Durand, B., Romashchenko, A., Shen, A.: Effective closed subshifts in 1D can be implemented in 2D. In: Blass, A., Dershowitz, N., Reisig, W. (eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 208–226. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. [FR59]
    Friedberg, R.M., Rogers, H.: Reducibility and completeness for sets of integers. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 5, 117–125 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Hig61]
    Higman, G.: Subgroups of finitely presented groups. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 262(1311), 455–475 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Hoc09]
    Hochman, M.: On the dynamics and recursive properties of multidimensional symbolic systems. Invent. Math. 176(1), 2009 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. [HS88]
    Higman, G., Scott, E.: Existentially Closed Groups. Oxford University Press, New York (1988)zbMATHGoogle Scholar
  12. [HV]
    Hochman, M., Vanier, P.: On the turing degrees of minimal subshifts. arXiv:1408.6487
  13. [JS72a]
    Jockusch, C.G., Soare, R.I.: Degrees of members of \({\Pi }_1^0\) classes. Pac. J. Math. 40(3), 605–616 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  14. [JS72b]
    Jockusch Jr., C.G., Soare, R.I.: \(\prod \nolimits _{1}^{0}\) classes and degrees of theories. Trans. Am. Math. Soc. 173, 33–56 (1972)MathSciNetGoogle Scholar
  15. [JV13]
    Jeandel, E., Vanier, P.: Turing degrees of multidimensional SFTs. Theoret. Comput. Sci. 505, 81–92 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. [JV15]
    Jeandel, E., Vanier, P.: Characterizations of periods of multidimensional shifts. Ergod. Theory Dyn. Syst. 35(2), 431–460 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Kre53]
    Kreisel, G.: A variant to Hilbert’s theory of the foundations of arithmetic. Br. J. Philos. Sci. 4(14), 107–129 (1953)MathSciNetCrossRefGoogle Scholar
  18. [Kur97]
    Kurka, P.: On topological dynamics of turing machines. Theoret. Comput. Sci. 174, 203–216 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Lin04]
    Lind, D.A.: Multi-dimensional symbolic dynamics. In: Williams, S.G. (ed.) Symbolic Dynamics and its Applications, Proceedings of Symposia in Applied Mathematics, vol. 60, pp. 61–79. American Mathematical Society, Providence (2004)CrossRefGoogle Scholar
  20. [LM95]
    Lind, D.A., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, New York (1995)CrossRefzbMATHGoogle Scholar
  21. [Mil12]
    Miller, J.S.: Two notes on subshifts. Proc. Am. Math. Soc. 140(5), 1617–1622 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Moo91]
    Moore, C.: Generalized one-sided shifts and maps of the interval. Nonlinearity 4(3), 727–745 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Mye74]
    Myers, D.: Non recursive tilings of the plane II. J. Symb. Log. 39(2), 286–294 (1974)CrossRefzbMATHGoogle Scholar
  24. [Rob71]
    Robinson, R.M.: Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12(3), 177–209 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  25. [RU06]
    Rumyantsev, A.Y., Ushakov, M.A.: Forbidden substrings, kolmogorov complexity and almost periodic sequences. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 396–407. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. [Sho60]
    Shoenfield, J.R.: Degrees of models. J. Symb. Log. 25(3), 233–237 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  27. [Sim11]
    Simpson, S.G.: Mass problems associated with effectively closed sets. Tohoku Math. J. 63(4), 489–517 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Sim14]
    Simpson, S.G.: Medvedev degrees of two-dimensional subshifts of finite type. Ergod. Theory Dyn. Syst. 34, 679–688 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Université de Lorraine, LORIA, UMR 7503Vandoeuvre-lès-NancyFrance
  2. 2.CNRS, LORIA, UMR 7503Vandoeuvre-lès-NancyFrance
  3. 3.InriaVillers-lès-NancyFrance

Personalised recommendations