Self-service Ad-hoc Querying Using Controlled Natural Language

  • Janis Barzdins
  • Mikus Grasmanis
  • Edgars RencisEmail author
  • Agris Sostaks
  • Juris Barzdins
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 615)


The ad-hoc querying process is slow and error prone due to inability of business experts of accessing data directly without involving IT experts. The problem lies in complexity of means used to query data. We propose a new natural language- and semistar ontology-based ad-hoc querying approach which lowers the steep learning curve required to be able to query data. The proposed approach would significantly shorten the time needed to master the ad-hoc querying and to gain the direct access to data by business experts, thus facilitating the decision making process in enterprises, government institutions and other organizations.


Ad-hoc querying Star ontologies Controlled natural language Hierarchical data 



This work is supported by the Latvian National research program SOPHIS under grant agreement Nr.10-4/VPP-4/11.

Authors are also very thankful to Lolita Zeltkalne for language consulting.


  1. 1.
    Barzdins, J., Rencis, E., Sostaks, A.: Data ontologies and ad hoc queries: a case study. In: Haav, H.M., Kalja, A., Robal, T. (eds.) Proceedings of the 11th International Baltic Conference, Baltic DB&IS, pp. 55–66. TUT Press (2014)Google Scholar
  2. 2.
    Chamberlin, D.D., Boyce, R.F.: SEQUEL: a structured English query language. In: Proceedings of ACM SIGFIDET Workshop, Ann Arbor, Mich., pp. 249–264, May 1974Google Scholar
  3. 3.
    Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Recommendation, 15 January 2008.
  4. 4.
    Microsoft. Graphical Query Designer User Interface. Accessed 3 Feb 2016
  5. 5.
    Zviedris, M., Barzdins, G.: ViziQuer: a tool to explore and query SPARQL endpoints. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., Leenheer, P., Pan, J. (eds.) ESWC 2011, Part II. LNCS, vol. 6644, pp. 441–445. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Kogalovsky, M.R.: Ontology-based data access systems. Program. Comput. Softw. 38(4), 167–182 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Soylu, A., Kharlamov, E., Zheleznyakov, D., Jimenez-Ruiz, E., Giese, M., Horrocks, I.: Ontology-based visual query formulation: an industry experience. In: Bebis, G., et al. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 842–854. Springer, Heidelberg (2015). doi: 10.1007/978-3-319-27857-5_75 CrossRefGoogle Scholar
  8. 8.
    SAP. QuickViewer.
  9. 9.
    Aspin, A.: Self-service business intelligence. In: High Impact Data Visualization with Power View, Power Map, and Power BI, pp. 1–18. Apress (2014)Google Scholar
  10. 10.
    Li, F., Jagadish, H.V.: Constructing an interactive natural language interface for relational databases. PVLDB 8(1), 73–84 (2014)Google Scholar
  11. 11.
    Llopis, M., Ferrández, A.: How to make a natural language interface to query databases accessible to everyone: an example. Comput. Stand. Interfaces 35(5), 470–481 (2013)CrossRefGoogle Scholar
  12. 12.
    Papadakis, N., Kefalas, P., Stilianakakis, M.: A tool for access to relational databases in natural language. Expert Syst. Appl. 38, 7894–7900 (2011)CrossRefGoogle Scholar
  13. 13.
    Androutsopoulos, I., Ritchie, G.D., Thanisch, P.: Natural language interfaces to databases – an introduction. Nat. Lang. Eng. 1(1), 29–81 (1995)CrossRefGoogle Scholar
  14. 14.
    Popescu, A.M., Armanasu, A., Etzioni, O., Ko, D., Yates, A.: Modern natural language interfaces to databases: composing statistical parsing with semantic tractability. In: COLING (2004)Google Scholar
  15. 15.
    Capindale, R.A., Crawford, R.G.: Using a natural language interface with casual users. Int. J. Man-Mach. Stud. 32, 341–361 (1990)CrossRefGoogle Scholar
  16. 16.
    Ogden, W.C., Kaplan, C.: The use of AND and OR in a natural language computer interface. In: Proceedings of the Human Factors Society 30th Annual Meeting, pp. 829–833. The Human Factors Society, Santa Monica (1986)Google Scholar
  17. 17.
    Yin, P., et al.: Answering questions with complex semantic constraints on open knowledge bases. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. ACM (2015)Google Scholar
  18. 18.
    Chin, D.: An analysis of scripts generated in writing between users and computer consultants. In: National Computer Conference, pp. 637–642 (1984)Google Scholar
  19. 19.
    Santoso, H., et al.: Ontology extraction from relational database: concept hierarchy as background knowledge. Knowl.-Based Syst. 24(3), 457–464 (2011)CrossRefGoogle Scholar
  20. 20.
    Bartolini, R., Caracciolo, C., Giovanetti, et al.: Creation and use of lexicons and ontologies for NL interfaces to databases. In: Proceedings of the International Conference on Language Resources and Evaluation, vol. 1, pp. 219–224 (2006)Google Scholar
  21. 21.
    Barzdins, J., Rencis, E., Sostaks, A.: Granular ontologies and graphical in-place querying. In: Short Paper Proceedings of the PoEM 2013. CEUR-WS, vol. 1023, pp. 136–145 (2013)Google Scholar
  22. 22.
    Barzdins, J., Rencis, E., Sostaks, A.: Fast ad hoc queries based on data ontologies. In: Haav, H.M., Kalja, A., Robal, T. (eds.) Frontiers of AI and Applications. Databases and Information Systems VIII, vol. 270, pp. 43–56. IOS Press (2014)Google Scholar
  23. 23.
    Yang, J.S.H., Chin, Y.H., Chung, C.G.: Many-sorted first-order logic database language. Comput. J. 35(2), 129–137 (1992)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Janis Barzdins
    • 1
  • Mikus Grasmanis
    • 1
  • Edgars Rencis
    • 1
    Email author
  • Agris Sostaks
    • 1
  • Juris Barzdins
    • 2
  1. 1.Institute of Mathematics and Computer ScienceUniversity of LatviaRigaLatvia
  2. 2.Faculty of MedicineUniversity of LatviaRigaLatvia

Personalised recommendations