Advertisement

A Proposal of a Multi-agent System Implementation for the Control of an Assistant Personal Robot

  • Dani Martínez
  • Eduard Clotet
  • Javier Moreno
  • Marcel Tresanchez
  • Jordi Palacín
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 473)

Abstract

This paper proposes a control system design for a mobile robot assistant based on a multi-agent architecture. The robotic platform used in this paper is a second generation Assistant Personal Robot (APR-02) with an own design. The control implementation is distributed among different agents in which each one is designed to fulfill a specific functionality such as localization, navigation, task managing, vision, hearing, communications, and environmental supervision. In addition, a set of shared memory instances are implemented to ensure the cohesion among all the agents while working together. The proposed methodology provides robustness and effectiveness by assigning each agent on a single CPU thread.

Keywords

Robot agent Personal Robot Multi-agent 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wooldridge, M., Jennings, N.: Intelligent Agents: Theory and Practice. The Knowledge Engineering Review 10(2), 115–152 (1995). Cambridge University Press, CambridgeCrossRefGoogle Scholar
  2. 2.
    Thrun, S.: Robotic mapping: A survey. Exploring Artificial Intelligence in the New Millennium, 1–35 (2002)Google Scholar
  3. 3.
    Biswas, J., Veloso, M.M.: Localization and navigation of the CoBots over long-term deployments. The International Journal of Robotics Research 32(14), 1679–1694 (2013)CrossRefGoogle Scholar
  4. 4.
    Zender, H., Mozos, O.M., Jensfelt, P., Kruijff, G.J., Burgard, W.: Conceptual spatial representations for indoor mobile robots. Robotics and Autonomous Systems 56(6), 493–502 (2008)CrossRefGoogle Scholar
  5. 5.
    Py, F., Rajan, K., McGann, C.: A systematic agent framework for situated autonomous systems. In: 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 583–590 (2010)Google Scholar
  6. 6.
    Graf, B., Hans, M., Schraft, R.D.: Mobile robot assistants. Robotics & Automation Magazine 11(2), 67–77 (2004)CrossRefGoogle Scholar
  7. 7.
    Gross, H. M., Schroeter, C., Mueller, S., Volkhardt, M., Einhorn, E., Bley, A., Merten, M.: Progress in developing a socially assistive mobile home robot companion for the elderly with mild cognitive impairment. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2430–2437 (2011)Google Scholar
  8. 8.
    Martinez, D., Teixidó, M., Font, D., Moreno, J., Tresanchez, M., Marco, S., Palacín, J.: Ambient intelligence application based on environmental measurements performed with an assistant mobile robot. Sensors 14(4), 6045–6055 (2014)CrossRefGoogle Scholar
  9. 9.
    Clotet, E., Martínez, D., Moreno, J., Tresanchez, M., Palacín, J.: Development of a high mobility assistant personal robot for home operation. In: Advances in Intelligent Systems and Computing, vol. 376, pp. 65–73 (2015)Google Scholar
  10. 10.
    Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  11. 11.
    Vilarrubi, M., Tresanchez, M., Martinez, D., Moreno, J., Garriga, J.A., Claria, F., Palacin, J.: Time domain detection of pure vowel sounds for simplified computer interaction. In: 17th International Conference on Information Fusion (FUSION), pp. 1–6 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dani Martínez
    • 1
  • Eduard Clotet
    • 1
  • Javier Moreno
    • 1
  • Marcel Tresanchez
    • 1
  • Jordi Palacín
    • 1
  1. 1.Department of Computer Science and Industrial EngineeringUniversity of LleidaLleidaSpain

Personalised recommendations