Advertisement

Smart Waste Collection Platform Based on WSN and Route Optimization

  • Álvaro Lozano MurciegoEmail author
  • Gabriel Villarrubia González
  • Alberto López Barriuso
  • Daniel Hernández de La Iglesia
  • Jorge Revuelta Herrero
  • Juan Francisco De Paz Santana
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 473)

Abstract

In this paper, we present the design and implementation of a novel agent-based platform to collect waste on cities and villages. A low cost sensor prototype is developed to measure the fulfilling level of the containers, a route system is developed to optimize the routes of the trucks and a mobile application has been developed to help drivers in their work. In order to evaluate and validate the proposed platform, a practical case study in a real city environment is modeled using open data available and with the purpose of identifying limitations of the platform.

Keywords

WSN Smart cities ESP8266 IoT Route optimization CVRP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Málaga, A.: Contenedores para papel y cartón - Conjuntos de datos - Datos abiertos Ayto. Málaga. http://datosabiertos.malaga.eu/dataset/contenedores-para-papel-y-carton
  2. 2.
    Gutierrez, J.M., Jensen, M., Henius, M., Riaz, T.: Smart Waste Collection System Based on Location Intelligence. Procedia Comput. Sci. 61, 120–127 (2015)CrossRefGoogle Scholar
  3. 3.
    Internet of things, smart spaces, and next generation networks and systems. In: 15th International Conference, NEW2AN 2015, and 8th Conference, ruSMART 2015, St. Petersburg, Russia, August 26-28, 2015, Proceedings. Springer (2015)Google Scholar
  4. 4.
  5. 5.
    ENEVO ®: Enevo – Optimising Waste Collection. https://www.enevo.com/
  6. 6.
    Eksioglu, B., Vural, A.V., Reisman, A.: The vehicle routing problem: A taxonomic review. Comput. Ind. Eng. 57, 1472–1483 (2009)CrossRefGoogle Scholar
  7. 7.
    Networking and Emerging Optimization. Vehicle Routing Problem. http://neo.lcc.uma.es/vrp/vehicle-routing-problem/
  8. 8.
    Huang, M., Hu, X.: Large scale vehicle routing problem: An overview of algorithms and an intelligent procedure. Int. J. Innov. Comput. Inf. Control. 8, 5809–5819 (2012)MathSciNetGoogle Scholar
  9. 9.
    Fisher, M.L.: Optimal Solution of Vehicle Routing Problems Using Minimum K-Trees. Oper. Res. 42, 626–642 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Lysgaard, J., Wøhlk, S.: A branch-and-cut-and-price algorithm for the cumulative capacitated vehicle routing problem. Eur. J. Oper. Res. 236, 800–810 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Lysgaard, J., Letchford, A.N., Eglese, R.W.: A New Branch-and-Cut Algorithm for the Capacitated Vehicle Routing ProblemGoogle Scholar
  12. 12.
    Schelter, S., Owen, S.: Collaborative Filtering with Apache Mahout Categories and Subject Descriptors. Recomm. Syst. Chall. ACM RecSys. i (2012)Google Scholar
  13. 13.
    Gambardella, L.M., Taillard, E., Agazzi, G.: MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows (1999)Google Scholar
  14. 14.
    Maher, M., Puget, J.-F. (eds.): Principles and Practice of Constraint Programming — CP98. Springer, Heidelberg (1998)Google Scholar
  15. 15.
    Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: Computer (Long. Beach. Calif), vol. 1520, pp. 417–431 (1998)Google Scholar
  16. 16.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning (1989)Google Scholar
  17. 17.
    Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13, 533–549 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics. 1, 147–167 (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    Barbarosoglu, G., Ozgur, D.: A tabu search algorithm for the vehicle routing problem. Comput. Oper. Res. 26, 255–270 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hunkeler, U., Truong, H.L., Stanford-Clark, A.: MQTT-S — A publish/subscribe protocol for wireless sensor networks. In: 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE 2008), pp. 791–798. IEEE (2008)Google Scholar
  21. 21.
    Espressif Systems. ESP8266EX Datasheet. 1–31 (2015)Google Scholar
  22. 22.
    Mora, A.M., Squillero, G. (eds.): Applications of Evolutionary Computation. Springer International Publishing, Cham (2015)Google Scholar
  23. 23.
    GraphHopper: GraphHopper - OpenStreetMap Wiki. http://wiki.openstreetmap.org/wiki/GraphHopper

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Álvaro Lozano Murciego
    • 1
    Email author
  • Gabriel Villarrubia González
    • 1
  • Alberto López Barriuso
    • 1
  • Daniel Hernández de La Iglesia
    • 1
  • Jorge Revuelta Herrero
    • 1
  • Juan Francisco De Paz Santana
    • 1
  1. 1.Department of Computer Science and Automation ControlUniversity of SalamancaSalamancaSpain

Personalised recommendations