Advertisement

Bio-based Methods for Wastewater Treatment: Green Sorbents

  • Alaa El Din Mahmoud
  • Manal Fawzy
Chapter

Abstract

Due to their high cost and environmental impact, conventional treatment methodology of heavy metals polluted waters usually did not receive public acceptance. Recently, phytoremediation is considered as a cheaper and eco-friendly alternative treatment method. Phytoremediation includes two uptake processes: biosorption and bioaccumulation. This chapter elaborates the advantages and disadvantages of these two processes. A brief description of different environmental factors affecting biosorption isotherm, equilibrium, and kinetic models are also provided. Moreover, factors affecting biosorption process are discussed and the merit of using factorial experimental design in the optimization of biosorption process and reducing the number of experimental runs were also highlighted. A brief account of quality control and assurance for biosorption experiments are provided.

Keywords

Biosorption Bioaccumulation Heavy metals Modeling F-factorial experimental design 

References

  1. 1.
    Juwarkar A, Singh S, Mudhoo A (2010) A comprehensive overview of elements in bioremediation. Rev Environ Sci Bio/Technol 9:215–288. doi: 10.1007/s11157-010-9215-6 CrossRefGoogle Scholar
  2. 2.
    Zimmo OR, Imseih N (2011) Overview of wastewater management practices in the Mediterranean region. In: Barceló D, Petrovic M (eds) Waste water treatment and reuse in the Mediterranean region. Springer, Berlin, pp 155–181Google Scholar
  3. 3.
    Seolatto AA, Silva Filho CJ, Mota DLF (2012) Evaluation of the efficiency of biosorption of lead, cadmium, and chromium by the biomass of Pequi Fruit Skin (Caryocar brasiliense Camb.). Chem Eng Trans 27:1974–9791Google Scholar
  4. 4.
    Gautam R, Chattopadhyaya M, Sharma S (2013) Biosorption of heavy metals: recent trends and challenges. In: Sharma SK, Sanghi R (eds) Wastewater reuse and management. Springer, The Netherlands, pp 305–322CrossRefGoogle Scholar
  5. 5.
    Gaddis EB, Glennie PR, Huang Y, Rast W (2012). Water. GEO 5. United Nations Environment Programme, pp 97–132Google Scholar
  6. 6.
    WHO/UNICEF (2005) Water for life. In: Making it happen. World Health Organization, GenevaGoogle Scholar
  7. 7.
    Thatai S, Khurana P, Boken J, Prasad S, Kumar D (2014) Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: a review. Microchem J 116:62–76CrossRefGoogle Scholar
  8. 8.
    Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1:193–197. doi: 10.2113/gselements.1.4.193 CrossRefGoogle Scholar
  9. 9.
    Fenglian F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418CrossRefGoogle Scholar
  10. 10.
    Singh R, Chadetrik R, Kumar R, Bishnoi K, Bhatia D, Kumar A, Bishnoi NR, Singh N (2010) Biosorption optimization of lead(II), cadmium(II) and copper(II) using response surface methodology and applicability in isotherms and thermodynamics modeling. J Hazard Mater 174:623–634. doi:http://dx.doi.org/10.1016/j.jhazmat.2009.09.097
  11. 11.
    Wang LK, Shammas NK (2009) Heavy metals in the environment. Taylor & Francis, Boca RatonGoogle Scholar
  12. 12.
    Mousavi HZ, Hosseynifar A, Jahed V, Dehghani SAM (2010) Removal of lead from aqueous solution using waste tire rubber ash as an adsorbent. Brazil J Chem Eng 27:79–87CrossRefGoogle Scholar
  13. 13.
    Rezić I (2012) Cellulosic fibers—biosorptive materials and indicators of heavy metals pollution. Microchem J 107:63–69Google Scholar
  14. 14.
    Grassi M, Kaykioglu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Lofrano G (ed) Emerging compounds removal from wastewater. Springer, The Netherlands, pp 15–37CrossRefGoogle Scholar
  15. 15.
    Singh D, Tiwari A, Gupta R (2012) Phytoremediation of lead from wastewater using aquatic plants. J Agric Technol 8:1–11Google Scholar
  16. 16.
    Fawzy M (2007) Biosorption of cadmium and lead by Phragmites australis L. biomass using factorial experimental design. Global J Biotechnol Biochem 2:10–20Google Scholar
  17. 17.
    Kaushik P, Malik A (2009) Fungal dye decolourization: recent advances and future potential. Environ Int 35:127–141CrossRefPubMedGoogle Scholar
  18. 18.
    Kotrba P (2011) Microbial biosorption of metals—general introduction. Springer, New YorkCrossRefGoogle Scholar
  19. 19.
    Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4:407–412CrossRefGoogle Scholar
  20. 20.
    Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152CrossRefPubMedGoogle Scholar
  21. 21.
    Muyzer G, Stams AJ (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol 6:441–454PubMedGoogle Scholar
  22. 22.
    Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443CrossRefPubMedGoogle Scholar
  23. 23.
    Sheoran A, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Min Eng 19:105–116CrossRefGoogle Scholar
  24. 24.
    Demirbas A (2008) Heavy metal adsorption onto agro-based waste materials: a review. J Hazard Mater 157:220–229. doi:http://dx.doi.org/10.1016/j.jhazmat.2008.01.024
  25. 25.
    Sud D, Mahajan G, Kaur M (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027CrossRefPubMedGoogle Scholar
  26. 26.
    Badr NBE (2007) Statistical design of experiments as a tool for optimizing the biosorption of Pb2+ and Cd2+ on Eichhornia crassipes (Mart.) Solms. Global J Environ Res 2:33–42Google Scholar
  27. 27.
    Amini M, Younesi H, Bahramifar N, Lorestani AAZ, Ghorbani F, Daneshi A, Sharifzadeh M (2008) Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger. J Hazard Mater 154:694–702CrossRefPubMedGoogle Scholar
  28. 28.
    Siyal A, Memon S, Khaskheli M (2012) Optimization and equilibrium studies of Pb (II) removal by Grewia Asiatica seed: a factorial design approach. Polish J Chem Technol 14:71–77Google Scholar
  29. 29.
    Calero M, Ronda A, Martín-Lara M, Pérez A, Blázquez G (2013) Chemical activation of olive tree pruning to remove lead (II) in batch system: factorial design for process optimization. Biomass Bioenergy 58:322–332CrossRefGoogle Scholar
  30. 30.
    Xu Z, Dong J (2008) Synthesis, characterization, and application of magnetic nanocomposites for the removal of heavy metals from industrial effluents. In: Shah V (ed) Emerging environmental technologies. Springer, The Netherlands, pp 105–148CrossRefGoogle Scholar
  31. 31.
    Sun J, Ji Y, Cai F, Li J (2012) Chapter five: heavy metal removal through biosorptive pathways. In: Sharma SK, Sanghi R (eds) Advances in water treatment and pollution prevention. Springer, The Netherlands, pp 95–145CrossRefGoogle Scholar
  32. 32.
    Farooq U, Kozinski JA, Khan MA, Athar M (2010) Biosorption of heavy metal ions using wheat based biosorbents—a review of the recent literature. Bioresour Technol 101:5043–5053. doi:http://dx.doi.org/10.1016/j.biortech.2010.02.030
  33. 33.
    Zouboulis A, Lazaridis N, Karapantsios, TD, Matis K (2010) Heavy metals removal from industrial wastewaters by biosorption. Int J Environ Eng Sci, 1:57–78.Google Scholar
  34. 34.
    Ajila CM, Brar S, Verma M, Prasada Rao UJS (2012) Sustainable solutions for agro processing waste management: an overview. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development. Springer, The Netherlands, pp 65–109CrossRefGoogle Scholar
  35. 35.
    Khan F, Wahab R, Rashid M, Khan A, Khatoon A, Musarrat J, Al‐Khedhairy A (2014) The use of carbonaceous nanomembrane filter for organic waste removal. Appl Nanotechnol Water Res, pp 115–152Google Scholar
  36. 36.
    Khan F, Wahab R (2014) Nanomaterials with uniform composition in wastewater treatment and their applications. Appl Nanotechnol Water Res, pp 475–511Google Scholar
  37. 37.
    Bailey SE, Olin TJ, Bricka RM, Adrian DD (1999) A review of potentially low-cost sorbents for heavy metals. Water Res 33:2469–2479. doi:http://dx.doi.org/10.1016/S0043-1354(98)00475-8
  38. 38.
    Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals: an overview. Ind J Biotechnol 7:159–169Google Scholar
  39. 39.
    Chojnacka K (2010) Biosorption and bioaccumulation—the prospects for practical applications. Environ Int 36:299–307. doi:http://dx.doi.org/10.1016/j.envint.2009.12.001
  40. 40.
    Bradl H (2005) Heavy metals in the environment: origin, interaction and remediation. Elsevier, AmsterdamGoogle Scholar
  41. 41.
    Gavrilescu M (2010) Biosorption in environmental remediation. In: Fulekar MH (ed) Bioremediation technology. Springer, The Netherlands, pp 35–99CrossRefGoogle Scholar
  42. 42.
    Singh KK, Rastogi R, Hasan SH (2005) Removal of cadmium from wastewater using agricultural waste (rice polish). J Hazard Mater 121:51–58. doi:http://dx.doi.org/10.1016/j.jhazmat.2004.11.002
  43. 43.
    Hawari AH, Mulligan CN (2006) Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresour Technol 97:692–700. doi:http://dx.doi.org/10.1016/j.biortech.2005.03.033
  44. 44.
    Vijayaraghavan K, Balasubramanian R (2015) Is biosorption suitable for decontamination of metal-bearing wastewaters? A critical review on the state-of-the-art of biosorption processes and future directions. J Environ Manage 160:283–296CrossRefPubMedGoogle Scholar
  45. 45.
    Liu L-e, Liu J, Li H, Zhang H, Liu J, Zhang H (2012) Equilibrium, kinetic, and thermodynamic studies of lead (II) biosorption on sesame leaf. Bioresources 7:3555–3572Google Scholar
  46. 46.
    Singanan M, Peters E (2013) Removal of toxic heavy metals from synthetic wastewater using a novel biocarbon technology. J Environ Chem Eng doi:http://dx.doi.org/10.1016/j.jece.2013.07.030
  47. 47.
    Mahmoud AED, Fawzy M, Radwan A (2016) Optimization of cadmium (Cd2) removal from aqueous solutions by novel biosorbent. Int J Phytoremed 18:619–625. doi: 10.1080/15226514.2015.1086305
  48. 48.
    Singanan M, Peters E (2013) Removal of toxic heavy metals from synthetic wastewater using a novel biocarbon technology. J Environ Chem Eng 1:884–890. doi:http://dx.doi.org/10.1016/j.jece.2013.07.030
  49. 49.
    Wong K, Lee C, Low K, Haron M (2003) Removal of Cu and Pb by tartaric acid modified rice husk from aqueous solutions. Chemosphere 50:23–28CrossRefPubMedGoogle Scholar
  50. 50.
    Lopez-Mesas M, Navarrete ER, Carrillo F, Palet C (2011) Bioseparation of Pb(II) and Cd(II) from aqueous solution using cork waste biomass. Modeling and optimization of the parameters of the biosorption step. Chem Eng J 174:9–17CrossRefGoogle Scholar
  51. 51.
    Surchi KMS (2011) Agricultural wastes as low cost adsorbents for Pb removal: kinetics, equilibrium and thermodynamics. Int J Chem 3:103–112CrossRefGoogle Scholar
  52. 52.
    Singh N, Gadi R (2012) Bioremediation of Ni(II) and Cu(II) from wastewater by the nonliving biomass of Brevundimonas vesicularis. J Environ Chem Ecotoxicol 4:137–142CrossRefGoogle Scholar
  53. 53.
    Amarasinghe B, Williams R (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132:299–309CrossRefGoogle Scholar
  54. 54.
    Abdel-Aty AM, Ammar NS, Abdel Ghafar HH, Ali RK (2013) Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. J Adv Res 4:367–374. doi:http://dx.doi.org/10.1016/j.jare.2012.07.004
  55. 55.
    Verma KVR, Swaminathan T, Subrahmanyam PVR (1990) Heavy metal removal with lignin. Environ Sci Health Part A 25:243–265CrossRefGoogle Scholar
  56. 56.
    Taty-Costodes VC, Fauduet H, Porte C, Delacroix A (2003) Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J Hazard Mater 105:121–142. doi:http://dx.doi.org/10.1016/j.jhazmat.2003.07.009
  57. 57.
    Arief VO, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2008) Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. Clean-Soil, Air, Water 36:937–962CrossRefGoogle Scholar
  58. 58.
    Şahan T, Öztürk D (2014) Investigation of Pb(II) adsorption onto pumice samples: application of optimization method based on fractional factorial design and response surface methodology. Clean Technol Environ Policy 16:819–831. doi: 10.1007/s10098-013-0673-8
  59. 59.
    Ahmaruzzaman M (2011) Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface Sci 166:36–59. doi:http://dx.doi.org/10.1016/j.cis.2011.04.005
  60. 60.
    Chen G, Zeng G, Tang L, Du C, Jiang X, Huang G, Liu H, Shen G (2008) Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresour Technol 99:7034–7040. doi:http://dx.doi.org/10.1016/j.biortech.2008.01.020
  61. 61.
    Badr N, Al-Qahtani KM (2013) Treatment of wastewater containing arsenic using Rhazya stricta as a new adsorbent. Environ Monit Assess 185:9669–9681CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Mudhoo A, Garg V, Wang S (2012) Heavy metals: toxicity and removal by biosorption. In: Lichtfouse E, Schwarzbauer J, Robert D (eds) Environmental chemistry for a sustainable world. Springer, The Netherlands, pp 379–442CrossRefGoogle Scholar
  63. 63.
    Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84:13–28CrossRefGoogle Scholar
  64. 64.
    Shi Y, Chai L, Yang Z, Jing Q, Chen R, Chen Y (2012) Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus. Bioprocess Biosyst Eng 35:843–850CrossRefPubMedGoogle Scholar
  65. 65.
    Miranda J, Krishnakumar G, Gonsalves R (2012) Cr6+ bioremediation efficiency of Oscillatoria laete-virens (Crouan & Crouan) Gomont and Oscillatoria trichoides Szafer: kinetics and equilibrium study. J Appl Phycol 24:1439–1454CrossRefGoogle Scholar
  66. 66.
    Gabr RM, Gad-Elrab SM, Abskharon RN, Hassan SH, Shoreit AA (2009) Biosorption of hexavalent chromium using biofilm of E. coli supported on granulated activated carbon. World J Microbiol Biotechnol 25:1695–1703CrossRefGoogle Scholar
  67. 67.
    Trivedi B, Patel K (2007) Biosorption of hexavalent chromium from aqueous solution by a tropical basidiomycete BDT-14 (DSM 15396). World J Microbiol Biotechnol 23:683–689CrossRefGoogle Scholar
  68. 68.
    Aksu Z, Balibek E (2007) Chromium (VI) biosorption by dried Rhizopus arrhizus: effect of salt (NaCl) concentration on equilibrium and kinetic parameters. J Hazard Mater 145:210–220CrossRefPubMedGoogle Scholar
  69. 69.
    Srinivasan A, Viraraghavan T (2010) Oil removal from water using biomaterials. Bioresour Technol 101:6594–6600CrossRefPubMedGoogle Scholar
  70. 70.
    Aoyama M, Kishino M, Jo TS (2005) Biosorption of Cr (VI) on Japanese cedar bark. Sep Sci Technol 39:1149–1162CrossRefGoogle Scholar
  71. 71.
    Igwe JC, Abia AA (2007) Equilibrium sorption isotherm studies of Cd (II), Pb (II) and Zn (II) ions detoxification from waste water using unmodified and EDTA-modified maize husk. Electron J Biotechnol 10:536–548CrossRefGoogle Scholar
  72. 72.
    Jain M, Garg VK, Kadirvelu K (2009) Chromium(VI) removal from aqueous system using Helianthus annuus (sunflower) stem waste. J Hazard Mater 162:365–372. doi:http://dx.doi.org/10.1016/j.jhazmat.2008.05.048
  73. 73.
    Zein R, Suhaili R, Earnestly F, Munaf E (2010) Removal of Pb (II), Cd (II) and Co (II) from aqueous solution using Garcinia mangostana L. fruit shell. J Hazard Mater 181:52–56CrossRefPubMedGoogle Scholar
  74. 74.
    García-Rosales G, Colín-Cruz A (2010) Biosorption of lead by maize (Zea mays) stalk sponge. J Environ Manage 91:2079–2086CrossRefPubMedGoogle Scholar
  75. 75.
    Ibrahim MM, Ngah WW, Norliyana M, Daud WW, Rafatullah M, Sulaiman O, Hashim R (2010) A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions. J Hazard Mater 182:377–385CrossRefPubMedGoogle Scholar
  76. 76.
    Tan C-y, Li G, Lu X-Q, Z-l C (2010) Biosorption of basic orange using dried A. filiculoides. Ecol Eng 36:1333–1340CrossRefGoogle Scholar
  77. 77.
    Carro L, Anagnostopoulos V, Lodeiro P, Barriada JL, Herrero R, de Vicente MES (2010) A dynamic proof of mercury elimination from solution through a combined sorption–reduction process. Bioresour Technol 101:8969–8974CrossRefPubMedGoogle Scholar
  78. 78.
    Ashraf MA, Maah M, Yusoff I (2010) Study of mango biomass (Mangifera indica L) as a cationic biosorbent. Int J Environ Sci Technol 7:581–590CrossRefGoogle Scholar
  79. 79.
    Lü L, Lu D, Chen L, Luo F (2010) Removal of Cd (II) by modified lawny grass cellulose adsorbent. Desalination 259:120–130CrossRefGoogle Scholar
  80. 80.
    Foo L, Tee C, Raimy N, Hassell D, Lee L (2012) Potential Malaysia agricultural waste materials for the biosorption of cadmium (II) from aqueous solution. Clean Technol Environ Policy 14:273–280CrossRefGoogle Scholar
  81. 81.
    Jeon C (2011) Removal of copper ion using rice hulls. J Indus Eng Chem 17:517–520CrossRefGoogle Scholar
  82. 82.
    Ding D-X, Liu X-T, Hu N, Li G-Y, Wang Y-D (2012) Removal and recovery of uranium from aqueous solution by tea waste. J Radioanalyt Nucl Chem 293:735–741CrossRefGoogle Scholar
  83. 83.
    Kurniawan A, Sisnandy VOA, Trilestari K, Sunarso J, Indraswati N, Ismadji S (2011) Performance of durian shell waste as high capacity biosorbent for Cr (VI) removal from synthetic wastewater. Ecol Eng 37:940–947CrossRefGoogle Scholar
  84. 84.
    Shukla D, Vankar P (2012) Efficient biosorption of chromium(VI) ion by dry Araucaria leaves. Environ Sci Pollut Res 19:2321–2328. doi: 10.1007/s11356-012-0741-3 CrossRefGoogle Scholar
  85. 85.
    Khoramzadeh E, Nasernejad B, Halladj R (2013) Mercury biosorption from aqueous solutions by sugarcane bagasse. J Taiwan Inst Chem Eng 44:266–269CrossRefGoogle Scholar
  86. 86.
    Lorenc-Grabowska E, Gryglewicz G (2007) Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes Pigments 74:34–40CrossRefGoogle Scholar
  87. 87.
    Sarkar B, Xi Y, Megharaj M, Krishnamurti GS, Rajarathnam D, Naidu R (2010) Remediation of hexavalent chromium through adsorption by bentonite based Arquad® 2HT-75 organoclays. J Hazard Mater 183:87–97CrossRefPubMedGoogle Scholar
  88. 88.
    Maurya NS, Mittal AK, Cornel P, Rother E (2006) Biosorption of dyes using dead macro fungi: effect of dye structure, ionic strength and pH. Bioresour Technol 97:512–521CrossRefPubMedGoogle Scholar
  89. 89.
    Itodo A, Itodo H (2010) Sorbent capacities and intensities of thermochemically cracked shea nut shells for the removal of waste water dyestuff. Academia Arena 2:41–50Google Scholar
  90. 90.
    Ghaedi M, Hajati S, Karimi F, Barazesh B, Ghezelbash G (2013) Equilibrium, kinetic and isotherm of some metal ion biosorption. J Indus Eng Chem 19:987–992CrossRefGoogle Scholar
  91. 91.
    Abdel Wahab O (2007) Kinetic and isotherm studies of copper (II) removal from wastewater using various adsorbents. Egyptian J Aquat Res 33(1):125–143Google Scholar
  92. 92.
    Rajoriya R, Prasad B, Mishra I, Wasewar K (2007) Adsorption of benzaldehyde on granular activated carbon: kinetics, equilibrium, and thermodynamic. Chem Biochem Eng Quart 21:219–226Google Scholar
  93. 93.
    Lagergren S (1898) Zur Theorie der sogenannten Absorption gelöster Stoffe. PA Norstedt & söner, StockholmGoogle Scholar
  94. 94.
    Ho Y-S, McKay G (2000) The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res 34:735–742CrossRefGoogle Scholar
  95. 95.
    Pillai SS, Mullassery MD, Fernandez NB, Girija N, Geetha P, Koshy M (2013) Biosorption of Cr (VI) from aqueous solution by chemically modified potato starch: equilibrium and kinetic studies. Ecotoxicol Environ Saf 92:199–205CrossRefPubMedGoogle Scholar
  96. 96.
    Elangovan R, Philip L, Chandraraj K (2008) Biosorption of chromium species by aquatic weeds: kinetics and mechanism studies. J Hazard Mater 152:100–112CrossRefPubMedGoogle Scholar
  97. 97.
    Gokhale S, Jyoti K, Lele S (2009) Modeling of chromium (VI) biosorption by immobilized Spirulina platensis in packed column. J Hazard Mater 170:735–743CrossRefPubMedGoogle Scholar
  98. 98.
    Gupta V, Rastogi A (2009) Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. J Hazard Mater 163:396–402CrossRefPubMedGoogle Scholar
  99. 99.
    Sarı A, Uluozlü ÖD, Tüzen M (2011) Equilibrium, thermodynamic and kinetic investigations on biosorption of arsenic from aqueous solution by algae (Maugeotia genuflexa) biomass. Chem Eng J 167:155–161CrossRefGoogle Scholar
  100. 100.
    Chen G-Q, Zhang W-J, Zeng G-M, Huang J-H, Wang L, Shen G-L (2011) Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr (VI)-contaminated wastewater. J Hazard Mater 186:2138–2143CrossRefPubMedGoogle Scholar
  101. 101.
    Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresour Technol 99:6017–6027. doi:http://dx.doi.org/10.1016/j.biortech.2007.11.064
  102. 102.
    Abdel-Ghani N, Hegazy A, El-Chaghaby G (2009) Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: biosorption kinetics and equilibrium modeling. Int J Environ Sci Tech 6:243–248CrossRefGoogle Scholar
  103. 103.
    Chen JP, Yang L, Lim S-F (2007) Emerging biosorption, adsorption, ion exchange, and membrane technologies. In: Wang L, Hung Y-T, Shammas N (eds) Advanced physicochemical treatment technologies. Humana Press, Totowa, pp 367–390CrossRefGoogle Scholar
  104. 104.
    Özacar M, Şengil IA (2003) Adsorption of reactive dyes on calcined alunite from aqueous solutions. J Hazard Mater 98:211–224CrossRefPubMedGoogle Scholar
  105. 105.
    Hameed B, Mahmoud D, Ahmad A (2008) Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste. J Hazard Mater 158:499–506CrossRefPubMedGoogle Scholar
  106. 106.
    Baysal Z, Cinar E, Bulut Y, Alkan H, Dogru M (2009) Equilibrium and thermodynamic studies on biosorption of Pb (II) onto Candida albicans biomass. J Hazard Mater 161:62–67CrossRefPubMedGoogle Scholar
  107. 107.
    Hamissa AMB, Lodi A, Seffen M, Finocchio E, Botter R, Converti A (2010) Sorption of Cd(II) and Pb(II) from aqueous solutions onto Agave americana fibers. Chem Eng J 159:67–74. doi:http://dx.doi.org/10.1016/j.cej.2010.02.036
  108. 108.
    Montgomery DC (2001) Design and analysis of experiments. Wiley, New YorkGoogle Scholar
  109. 109.
    Abdel-Ghani NT, Hegazy AK, El-Chaghaby GA, Lima EC (2009) Factorial experimental design for biosorption of iron and zinc using Typha domingensis phytomass. Desalination 249:343–347CrossRefGoogle Scholar
  110. 110.
    Saadat S, Karimi-Jashni A (2011) Optimization of Pb(II) adsorption onto modified walnut shells using factorial design and simplex methodologies. Chem Eng J 173:743–749. doi:http://dx.doi.org/10.1016/j.cej.2011.08.042
  111. 111.
    Anderson M, Whitcomb P (2007) Chapter 3: two-level factorial design. In: Anderson M, Whitcomb P (eds) DOE simplified: practical tools for effective experimentation, 2nd edn. CRC Press, Boca Raton, pp 1–30Google Scholar
  112. 112.
    Spall JC (2010) Factorial design for efficient experimentation. IEEE Control Syst 30(5):38–53CrossRefGoogle Scholar
  113. 113.
    Varma DSNR, Srinivas C, Nagamani C, PremSagar T, Rajsekhar M (2010) Studies on biosorption of Cadmium on Psidium guajava leaves powder using statistical experimental design. J Chem Pharmaceut Res 2:29–44Google Scholar
  114. 114.
    Nasr M, Mahmoud A, Fawzy M, Radwan A (2015) Artificial intelligence modeling of cadmium(II) biosorption using rice straw. Appl Water Sci 1–9. doi: 10.1007/s13201-015-0295-x
  115. 115.
    Garg U, Kaur MP, Jawa GK, Sud D, Garg VK (2008) Removal of cadmium (II) from aqueous solutions by adsorption on agricultural waste biomass. J Hazard Mater 154:1149–1157. doi:http://dx.doi.org/10.1016/j.jhazmat.2007.11.040
  116. 116.
    Krishnani KK, Meng X, Christodoulatos C, Boddu VM (2008) Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J Hazard Mater 153:1222–1234CrossRefPubMedGoogle Scholar
  117. 117.
    Park D, Yun Y-S, Lee DS, Park JM (2011) Optimum condition for the removal of Cr (VI) or total Cr using dried leaves of Pinus densiflora. Desalination 271:309–314CrossRefGoogle Scholar
  118. 118.
    Sulaymon AH, Mohammed AA, Al-Musawi TJ (2013) Competitive biosorption of lead, cadmium, copper, and arsenic ions using algae. Environ Sci Pollut Res 20(5):3011–3023CrossRefGoogle Scholar
  119. 119.
    Al-Qahtani KM (2012) Biosorption of Cd and Pb on Cyperus laevigatus: application of factorial design analysis. Life Sci J 9:860–868Google Scholar
  120. 120.
    Muhammad M, Nwaedozie J (2012) Application of marine biomass for the removal of metals from industrial wastewater. Indian J Innovat Develop 1:36–44Google Scholar
  121. 121.
    EPA (2007) Test methods for evaluating solid wastes physical/chemical methods. pp. 1–28Google Scholar
  122. 122.
    Zhang C (2007) Fundamentals of environmental sampling and analysis. Wiley, New YorkCrossRefGoogle Scholar
  123. 123.
    Marcovecchio JE, Botté SE, Freije RH (2007) Heavy metals, major metals, trace elements. In: Nollet ML (ed) Handbook of water analysis, 2nd edn. CRC Press, New York, pp 275–311Google Scholar
  124. 124.
    Mortimer M, Müller JF, Liess M (2007) Sampling methods in surface waters. In: Nollet ML (ed) Handbook of water analysis. CRC Press, New York, pp 1–45Google Scholar
  125. 125.
    Srivastava S, Goyal P (2010) Biosorption: application strategies. In: Novel biomaterials. Springer, Berlin, pp. 53–55Google Scholar
  126. 126.
    Ozdemir U, Ozbay I, Ozbay B, Veli S (2014) Application of economical models for dye removal from aqueous solutions: cash flow, cost–benefit, and alternative selection methods. Clean Technol Environ Policy 16:423–429CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Environmental Sciences DepartmentFaculty of Science, Alexandria UniversityAlexandriaEgypt

Personalised recommendations