Advertisement

Phytoextraction of Heavy Metals by Fast-Growing Trees: A Review

  • Slobodanka Pajević
  • Milan Borišev
  • Nataša Nikolić
  • Danijela D. Arsenov
  • Saša Orlović
  • Milan ŽupunskiEmail author
Chapter

Abstract

Phytoextraction, as the most commonly used technique in phytoremediation, involves the utilization of plant-hyperaccumulators for the absorption pollutants (primarily heavy metals) from the environment, their transport, and concentration in the biomass of harvestable organs. This in situ, cost-effective technology could improve the quality of moderately contaminated lands and waters within realistic time scales. For a successful implementation of phytoextraction, the main prerequisite is to identify native plants which are able to extract (absorb), degrade, or sequester hazardous contaminants from growing media and develop strategies for making hybrids and genetically modified plants which are good candidates for phytoextraction. Because of their rapid growth rate and high biomass yield, their adaptability to different ecological conditions and genetic variability is outstanding. Willows and poplars from the Salicaceae family are valuable resources for the use of phytoremediation. Also, species like the eucalypt, black locust, birch, and paulownia are defined by numerous researchers as good candidates for phytoextraction due to their high metal bioconcentration ability and high yield. There have been numerous studies confirming that species with a role in phytoextraction developed a complex network of homeostatic metabolic mechanisms in order to control metal uptake, accumulation, (re)distribution, and detoxification.

Keywords

Birch Black locust Eucalypts Heavy metals Paulownia Phytoextraction Poplars Willows 

References

  1. 1.
    Crawford RL (2006) Bioremediation. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Prokaryotes, vol 1. Springer, Singapore, pp 850–863Google Scholar
  2. 2.
    Pilon-Smiths E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  3. 3.
    Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658CrossRefGoogle Scholar
  4. 4.
    Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18CrossRefGoogle Scholar
  5. 5.
    Pajević S, Borišev M, Nikolić N, Krstić B, Pilipović A, Orlović S (2009) Phytoremediation capacity of poplar (Populus spp.) and willow (Salix spp.) clones in relation to photosynthesis. Arch Biol Sci 61:239–247CrossRefGoogle Scholar
  6. 6.
    González-Oreja JA, Rozas MA, Alkorta I, Garbisu C (2008) Dendroremediation of heavy metal polluted soils. Rev Environ Health 23:1–12CrossRefGoogle Scholar
  7. 7.
    Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–700CrossRefGoogle Scholar
  8. 8.
    Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A (2011) Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol 31(12):1319–1334PubMedCrossRefGoogle Scholar
  9. 9.
    Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654CrossRefGoogle Scholar
  10. 10.
    Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  11. 11.
    Marchiol L, Sacco P, Assolari S, Zerbi G (2004) Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158:345–356CrossRefGoogle Scholar
  12. 12.
    Dickinson NM, Baker AJM, Doronila A, Laidlaw S, Reeves RD (2009) Phytoremediation of inorganics: realism and synergies. Int J Phytoremediation 11:97–114CrossRefGoogle Scholar
  13. 13.
    Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236PubMedCrossRefGoogle Scholar
  14. 14.
    Zacchini M, Pietrini F, Scarascia Mugnozza G, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut [Internet] 197(1–4):23–34. http://link.springer.com/10.1007/s11270-008-9788-7 CrossRefGoogle Scholar
  15. 15.
    McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282PubMedCrossRefGoogle Scholar
  16. 16.
    Singh NP, Santal AR (2015) Phytoremediation of heavy metals: the use of green approaches to clean the environment. In: Ansari A, Singh S, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 2. Springer International Publishing, Cham, pp 115–129Google Scholar
  17. 17.
    Bolan NS, Park JH, Robinson B, Naidu R, Huh KY (2011) Phytostabilization: a green approach to contaminant. Adv Agron 112:145–204CrossRefGoogle Scholar
  18. 18.
    Kotrba P (2013) Transgenic approaches to enhance phytoremediation of heavy metal-polluted soils. In: Gupta DK (ed) Plant-based remediation processes. Springer, Berlin, pp 239–272CrossRefGoogle Scholar
  19. 19.
    Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135PubMedCrossRefGoogle Scholar
  20. 20.
    Maestri M, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13CrossRefGoogle Scholar
  21. 21.
    Lai HY, Chen ZS (2009) In-situ selection of suitable plants for phytoremediation of multi-metals contaminated sites in central Taiwan. Int J Phytoremediation 11:235–250CrossRefGoogle Scholar
  22. 22.
    Komives T, Gullner G (2006) Dendroremediation: the use of trees in cleaning up polluted soils. In: Mackova M et al (eds) Phytoremediation rhizoremediation, theoretical background. Focus on biotechnology. Springer, Dordrecht, pp 23–31Google Scholar
  23. 23.
    Pulford I, Watson S (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int [Internet] 29(4):529–540. http://linkinghub.elsevier.com/retrieve/pii/S0160412002001526 CrossRefGoogle Scholar
  24. 24.
    Laureysens I, Blust R, Temmerman L, Lemmens C, Ceulemans R (2004) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture: I. Seasonal variation in leaf, wood and bark concentrations. Environ Pollut 131:485–494PubMedCrossRefGoogle Scholar
  25. 25.
    Turnau K, Henriques FS, Anielska T, Renker C, Buscot F (2007) Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing. Environ Exp Bot 61:117–123CrossRefGoogle Scholar
  26. 26.
    Chen J, Chen Y, Shi ZQ, Su Y, Han FX (2015) Phytoremediation to remove metals/metalloids from soils. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 2. Springer, Cham, pp 297–304Google Scholar
  27. 27.
    Pahdey VC, Bajpai O, Singh N (2016) Energy crops in sustainable phytoremediation. Renew Sust Energy Rev 54:58–73CrossRefGoogle Scholar
  28. 28.
    Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytoremediation 1:115–123CrossRefGoogle Scholar
  29. 29.
    Robinson BH, Mills TM, Petit D, Fung L, Green S, Clothier B (2000) Natural and induced cadmium accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306CrossRefGoogle Scholar
  30. 30.
    Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31(4):609–613PubMedCrossRefGoogle Scholar
  31. 31.
    Unterbrunner R, Puschenreiter M, Sommer P, Wieshammer G, Tlustos P, Zupan M et al (2007) Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ Pollut [Internet] 148(1):107–114. http://www.ncbi.nlm.nih.gov/pubmed/17224228
  32. 32.
    Hammer D, Kayser A, Keller C (2003) Phytoextraction of Cd and Zn with Salix viminalis in field trials. Soil Use Manag 19(3):187–192CrossRefGoogle Scholar
  33. 33.
    Rosselli W, Keller C, Boschi K (2003) Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 256:265–272CrossRefGoogle Scholar
  34. 34.
    Migeon A, Richaud P, Guinet F, Chalot M, Blaudez D (2009) Metal accumulation by woody species on contaminated sites in the North of France. Water Air Pollut 204(1–4):89–101CrossRefGoogle Scholar
  35. 35.
    Guerra F, Gainza F, Perez M, Zamudio F (2011) Phytoremediation of heavy metals using poplars (Populus spp.): a glimpse of the plant responses to copper, cadmium and zinc stress. In: Golubev IA (ed) Handbook of phytoremediation. Nova Science, New York, pp 387–413Google Scholar
  36. 36.
    Logan TJ (1990) Chemical degradation of soil. In: Lal R, Stewart BA (eds) Advances in soil science. Soil degradation. Springer, New York, pp 187–223Google Scholar
  37. 37.
    Borišev M, Pajević S, Nikolić N, Krstić B, Župunski M, Kebert M et al (2012) Response of Salix alba to heavy metals and diesel fuel contamination. Afr J Biotechnol 11(78):14313–14319Google Scholar
  38. 38.
    Hough RL, Tye AM, Crout NMJ, McGrath SP, Zhang H, Young SD (2005) Evaluating a ‘free ion activity model’ applied to metal uptake by Lolium perenne L. grown in contaminated soils. Plant Soil 270:1–12CrossRefGoogle Scholar
  39. 39.
    Ross SM (1994) Retention, transformation and mobility of toxic metals in soils. In: Ross SM (ed) Toxic metals in soil-plant systems. Wiley, New York, pp 63–152Google Scholar
  40. 40.
    Ross SM (1994) Toxic metals in soil–plant systems. Wiley, ChichesterGoogle Scholar
  41. 41.
    Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783CrossRefGoogle Scholar
  42. 42.
    Angelova V, Ivanov K, Ivanova R (2003) Effect of chemical forms of lead, cadmium and zinc in polluted soils on their uptake by tobacco. J Environ Prot Ecol 4(2):316–327Google Scholar
  43. 43.
    Farrag K, Senesi N, Nigro F, Petrozza A, Palma A, Shaarawi S, Brunetti G (2012) Growth responses of crop and weed species to heavy metals in pot and field experiments. Environ Sci Pollut Res 19:3636–3644CrossRefGoogle Scholar
  44. 44.
    Farrag K, Senesi N, Rovira PS, Brunetti G (2012) Effects of selected soil properties on phytoremediation applicability for heavy-metal-contaminated soils in the Apulia region, Southern Italy. Environ Monit Assess 184:6593–6606PubMedCrossRefGoogle Scholar
  45. 45.
    Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548PubMedCrossRefGoogle Scholar
  46. 46.
    Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11PubMedCrossRefGoogle Scholar
  47. 47.
    Borišev M, Pajević S, Nikolić N, Orlović S, Župunski M, Pilipović A, Kebert M (2016) Magnesium and iron deficiencies alter Cd accumulation in Salix viminalis L. Int J Phytoremediation 18(2):164–170PubMedCrossRefGoogle Scholar
  48. 48.
    Cieslinski G, Neilsen GH, Hogue EJ (1996) Effect of soil cadmium application and pH on growth and cadmium accumulation in roots, leaves and fruit of strawberry plants (Fragaria x ananassa Duch.). Plant Soil 180:267–276CrossRefGoogle Scholar
  49. 49.
    Vidal M, Santos MJ, Abrao T, Rodriguez J, Rigol A (2009) Modeling competitive metal sorption in a mineral soil. Geoderma 149:189–198CrossRefGoogle Scholar
  50. 50.
    Trakal L, Komárek M, Száková J, Tlustoš P, Tejnecký V, Drábek O (2012) Sorption behavior of Cd, Cu, Pb, and Zn and their interactions in phytoremediated soil. Int J Phytoremediation 14:806–819PubMedCrossRefGoogle Scholar
  51. 51.
    Xin J, Huang B, Yang Z, Yuan J, Dai H, Qiu Q (2010) Responses of different water spinach cultivars and their hybrid to Cd, Pb and Cd-Pb exposures. J Hazard Mater 175:468–476PubMedCrossRefGoogle Scholar
  52. 52.
    Hernández-Allica J, Garbisu C, Barrutia O (2007) Becerril JM EDTA-induced heavy metal accumulation and phytotoxicity in cardoon plants. Environ Exp Bot 60:26–32CrossRefGoogle Scholar
  53. 53.
    Zhang GP, Fukami M, Sekimoto H (2000) Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat. J Plant Nutr 23:1337–1350CrossRefGoogle Scholar
  54. 54.
    Borišev M, Pajević S, Nikolić N, Pilipović A, Krstić B, Orlović S (2009) Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Pol J Environ Stud 18(4):553–561Google Scholar
  55. 55.
    Meers E, Lesage E, Lamsal S, Hopgood M, Vervaeke P, Tack FMG et al (2005) Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil. Int J Phytoremediation 7(2):129–142PubMedCrossRefGoogle Scholar
  56. 56.
    Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68CrossRefGoogle Scholar
  57. 57.
    Derome J, Lindroos AJ (1998) Effect of heavy-metal contamination on macronutrient availability and acidification parameters in forest soil in the vicinity of the Harjavalta Cu-Ni smelter, SW Finland. Environ Pollut 99:225–232PubMedCrossRefGoogle Scholar
  58. 58.
    Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Phys 17:21–34Google Scholar
  59. 59.
    Emamverdian A, Ding Y, Mokhberdoran F, Xie Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J. Article ID 756120. http://dx.doi.org/10.1155/2015/756120
  60. 60.
    Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179CrossRefGoogle Scholar
  61. 61.
    Nikolić N, Kojić D, Pilipović A, Pajević S, Krstić B, Borišev M et al (2008) Responses of hybrid poplar to cadmium stress: photosynthetic characteristics, cadmium and proline accumulation, and antioxidant enzyme activity. Acta Biol Cracov Bot 50(2):95–103Google Scholar
  62. 62.
    Dai H-P, Shan C, Wei Y, Liang J-G, Yang T-X, Sa W-Q et al (2012) Subcellular localization of cadmium in hyperaccumulator Populus × canescens. Afr J Biotechnol 11:3779–3787Google Scholar
  63. 63.
    Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719PubMedCrossRefGoogle Scholar
  64. 64.
    Castiglione S, Franchin C, Fossati T, Lingua G, Torrigiani P, Biondi S (2007) High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus alba L. cv. Villafranca). Chemosphere [Internet] 67(6):1117–1126. http://www.ncbi.nlm.nih.gov/pubmed/17223164
  65. 65.
    Macovei A, Ventura L, Donà M, Faè M (2010) Effect of heavy metal treatments on metallothionein expression profiles in white poplar (Populus alba L.) cell suspension cultures. Ann Univ Oradea Fascicula Biol Tom. XVII(2):274–279.Google Scholar
  66. 66.
    Salt DE, Rauser WE (1995) MgATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301PubMedPubMedCentralGoogle Scholar
  67. 67.
    Bittsánszky A, Kömives T, Gullner G, Gyula G, Kiss J, Heszky L et al (2005) Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ Int 31:251–254PubMedCrossRefGoogle Scholar
  68. 68.
    Sanitá di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130CrossRefGoogle Scholar
  69. 69.
    Ivanova L, Ronzhina D, Ivanov L, Stroukova L, Peuke A, Rennenberg H (2009) Chloroplast parameters differ in wild type and transgenic poplars overexpressing gsh1 in the cytosol. Plant Biol 11:625–630PubMedCrossRefGoogle Scholar
  70. 70.
    Salamanca EJP, Medera-Parra CA, Avila-Williams CA, Rengifo-Gallego AL, Rios DA (2015) Phytoremediation using terrestrial plants. In: Ansari AA, Gill SS, Gill R, Lanza GR, Newman L (eds) Phytoremediation: management of environmental contaminants, vol 2. Springer, Cham, pp 305–319Google Scholar
  71. 71.
    Pilipović A, Orlović S, Nikolić N, Borišev M, Krstić B, Rončević S (2012) Growth and plant physiological parameters as markers for selection of poplar clones for crude oil phytoremediation. Šumarski list 136(5–6):273–281Google Scholar
  72. 72.
    Nikolić N, Borišev M, Pajević S, Arsenov D, Župunski M, Orlović S, Pilipović A (2015) Photosynthetic response and tolerance of three willow species to cadmium exposure in hydroponic culture. Arch Biol Sci 67(4):1411–1420. doi: 10.2298/ABS150421120N CrossRefGoogle Scholar
  73. 73.
    Küpper H, Parameswaran A, Leitenmajer B, Trtílek M, Šetlík I (2007) Cadmium-induced inhibition of photosynthesis and long-term acclimation to cadmium stress in the hyperaccumulator Thlaspi caerulescens. New Phytol 175(4):655–674PubMedCrossRefGoogle Scholar
  74. 74.
    Katanić M, Pilipović A, Orlović S, Krstić B, Kovačević B, Pekeč S (2008) The influence of lead on the in vitro growth and concentration of photosynthetic pigments in shoots of the white poplar (Populus alba) clones. Lesnícky čas For J 54(Suppl 1):29–36Google Scholar
  75. 75.
    Klang-Westin E, Perttu K (2002) Effect of nutrient supply and soil cadmium concentration on cadmium removal by willow. Biomass Bioenergy 23:415–426CrossRefGoogle Scholar
  76. 76.
    Donovan LA, Dudley SA, Rosenthal DM, Ludwig F (2007) Phenotypic selection on leaf water use efficiency and related ecophysiological traits for natural populations of desert sunflowers. Oecologia 152(1):13–25PubMedCrossRefGoogle Scholar
  77. 77.
    Becerril JM, Gonzales-Marua C, Munoz-Rueda A, de Felipe MR (1989) Changes induced by cadmium and lead in gas exchange and water relations of clover and lucerne. Plant Physiol Biochem 27:913–918Google Scholar
  78. 78.
    Dickmann DI, Kuzovkina J (2014) Poplars and willows of the world, with emphasis on silviculturally important species. In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. FAO and CABI, Croydon, pp 8–92CrossRefGoogle Scholar
  79. 79.
    Kuzovkina YA, Vietto L (2014) An update on the cultivar registration of Populus and Salix (Salicaceae). Skvortsovia 1(2):133–148Google Scholar
  80. 80.
    Argus GW (1997) Infrageneric classification of New World Salix L. (Salicaceae). Syst Bot Monogr 52:1–121CrossRefGoogle Scholar
  81. 81.
    Argus GW (2010) Salix. In: Flora of North America Editorial Committee (ed) Flora of North America, vol 7, Magnoliophyta: Salicaceae to Brassicaceae. Oxford University Press, New York, pp 23–51Google Scholar
  82. 82.
    Lauron-Moreau A, Pitre FE, Argus GW, Labrecque M, Brouillet L (2015) Phylogenetic relationships of American willows (Salix L., Salicaceae). Plos One 10(4):e0121965PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Eckenwalder JE (2010) Populus. In: Flora of North America Editorial Committee (ed) Flora of North America North of Mexico. Oxford University Press, New York, pp 23–162Google Scholar
  84. 84.
    Rae AM, Street NR, Rodríguez-Acosta M (2007) Populus trees. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 7. Forest Trees. Springer, Berlin, pp 1–28Google Scholar
  85. 85.
    Gaudet M, Pietrini F, Beritognolo I, Iori V, Yacchini M, Massaci A et al (2011) Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Phys 31:1309–1318CrossRefGoogle Scholar
  86. 86.
    Hamzeh M, Dayanandan S (2004) Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast TRNT-TRNF region and nuclear rDNA. Am J Bot 91:1398–1408PubMedCrossRefGoogle Scholar
  87. 87.
    Vyslouzilova M, Tlustos P, Szakova J, Vysloužilová M, Tlustoš P, Száková J (2003) Cadmium and zinc phytoextraction potential of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ 49(12):542–547Google Scholar
  88. 88.
    Tlustoš P, Száková J, Vysloužilová M, Pavlíková D, Weger J, Javorská H (2007) Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Cent Eur J Biol 2(2):254–275Google Scholar
  89. 89.
    Cloutier-Hurteau B, Turmel MC, Mercier C, Courchesne F (2014) The sequestration of trace elements by willow (Salix purpurea)—which soil properties favor uptake and accumulation? Environ Sci Pollut Res 21:4759–4771CrossRefGoogle Scholar
  90. 90.
    Sommerville AHC (1992) Willows in the environment. Proc Roy Soc Edinb B Biol Sci 98:215–244Google Scholar
  91. 91.
    Bedell JP, Capilla X, Girya C, Schwartzb C, Morelb JL, Perrodina Y (2009) Distribution, movement and availability of Cd and Zn in a dredged sediment cultivated with Salix alba. Environ Exp Bot 67:403–414CrossRefGoogle Scholar
  92. 92.
    Mleczek M, Rutkowski P, Rissmann I, Kaczmarek Z, Golinski P, Szentner K et al (2010) Biomass productivity and phytoremediation potential of Salix alba and Salix viminalis. Biomass Bioenergy 34(9):1410–1418CrossRefGoogle Scholar
  93. 93.
    Dickinson NM, Riddell-Black (2014) Phytoremediation and carbon sequestration of degraded lands. In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. CABI, BostonGoogle Scholar
  94. 94.
    Lunáčková L, Masarovičová E, Král’Ová K, Streško V (2003) Response of fast growing woody plants from family Salicaceae to cadmium treatment. Bull Environ ContamToxicol 70(3):576–585CrossRefGoogle Scholar
  95. 95.
    Riddell-Black D (1994) Heavy metal uptake by fast growing willow species. In: Aronsson O, Perttu K (eds) Willow vegetation filters for municipal wastewaters and sludges. A biological purification system. Swedish University Agricultural Sciences, Uppsala, pp 145–151Google Scholar
  96. 96.
    Landberg T, Greger M (1994) Can heavy metal tolerant clones of Salix be used as vegetation filters on heavy metal contaminated land? In: Aronsson P, Perttu K (eds) Willow vegetation filters for municipal wastewaters and sludges. A biological purification system. Swedish University Agricultural Sciences, Uppsala, pp 133–144Google Scholar
  97. 97.
    Landberg T, Greger M (1996) Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl Geochem [Internet] 11(1–2):175–180. http://www.sciencedirect.com/science/article/pii/0883292795000828.
  98. 98.
    Lyyra S, Lima A, Merkle SA (2006) In vitro regeneration of Salix nigra from adventitious shoots. Tree Physiol 26(7):969–975PubMedCrossRefGoogle Scholar
  99. 99.
    Lux A, Masarovicovà E, Liskova D, Sottnikova-Stefanovicova A, Lunackova L, Marcekova M (2002) Physiological and structural characteristics and in vitro cultivation of some willows and poplars. In: Proceedings of the Cost Action 837, Bordeaux, 25-27 April 2002Google Scholar
  100. 100.
    Capuana M (2011) Heavy metals and woody plants—biotechnologies for phytoremediation. iForest Biogeosci For [Internet] 4(1):7–15. http://www.sisef.it/iforest/?doi=10.3832/ifor0555-004
  101. 101.
    Confalonieri M, Balestrazzi A, Bisoffi S, Carbonera D (2003) In vitro culture and genetic engineering of Populus spp.: synergy for forest tree improvement. Plant Cell Tissue Organ Cult 72:109–138CrossRefGoogle Scholar
  102. 102.
    Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18:82–90CrossRefGoogle Scholar
  103. 103.
    Watson C, Pulford ID, Riddell-Black D (1999) Heavy metal toxicity responses of two willow (Salix) varieties grown hydroponically: development of a tolerance screening test. Environ Geochem Health 21:359–364CrossRefGoogle Scholar
  104. 104.
    YangW, Zhao F, Zhang X, Ding Z, Wang Y, Zhu Z et al Variations of cadmium tolerance and accumulation among 39 Salix clones: implications for phytoextraction. Environ Earth Sci [Internet] 2015;73(7):3263–3274. http://link.springer.com/10.1007/s12665-014-3636-4
  105. 105.
    Lux A, Šottníková A, Opatrná J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of cadmium accumulation and sensitivity. Physiol Plantarum 120:537–545CrossRefGoogle Scholar
  106. 106.
    Vassilev A, Perez-Sanz A, Semanem B, Carleer R, Vangronsveld J (2005) Cadmium accumulation and tolerance of two Salix genotypes hydroponically grown in presence of cadmium. J Plant Nutr 28:2159–2177CrossRefGoogle Scholar
  107. 107.
    Luković J, Merkulov L, Pajević S, Zorić L, Nikolić N, Borišev M et al (2012) Quantitative assessment of effects of cadmium on the histological structure of poplar and willow leaves. Water Air Soil Pollut [Internet] 23(6):2979–2993. http://link.springer.com/10.1007/s11270-012-1081-0
  108. 108.
    Cocozza C, Maiuro L, Tognetti R (2011) Mapping cadmium distribution in roots of Salicaceae through scanning electron microscopy with x-ray microanalysis. iForest 4:113–120CrossRefGoogle Scholar
  109. 109.
    Vaculík M, Konlechner C, Langer I, Adlassnig W, Puschenreiter M, Lux A, Hauser MT (2012) Root anatomy and element distribution vary between two Salix caprea isolates with different Cd accumulation capacities. Environ Pollut 163:117–126PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Sottnikova A, Lunackova L, Masarovicova E, Lux A, Stresko V (2003) Changes in the rooting and growth of willow and poplars induced by cadmium. Biol Plant 46:129–131CrossRefGoogle Scholar
  111. 111.
    Cosio C, Vollenweider P, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environ Exp Bot [Internet] 58(1–3):64–74. http://linkinghub.elsevier.com/retrieve/pii/S009884720500105X CrossRefGoogle Scholar
  112. 112.
    Yang W, Wang Y, Zhao F, Ding Z, Zhang X, Zhu Z et al (2014) Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction. J Zhejiang Univ Sci B [Internet] 15(9):788–800. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4162880&tool=pmcentrez&rendertype=abstract CrossRefGoogle Scholar
  113. 113.
    Dos SantosUtmazian MN, Wieshammer G, Vega R, Wenzel WW (2007) Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ Pollut [Internet] 148(1):155–165. http://linkinghub.elsevier.com/retrieve/pii/S0269749106005872 CrossRefGoogle Scholar
  114. 114.
    Zhivotovsky OP, Kuzovkina JA, Schulthess CP, Morris T, Pettinelli D, Ge M (2010) Hydroponic screening of willows (Salix L.) for lead tolerance and accumulation. Int J Phytoremediation 13:75–94CrossRefGoogle Scholar
  115. 115.
    Klang-Westin E, Eriksson J (2003) Potential of Salix as phytoextractor for Cd on moderately contaminated soils. Plant Soil 249(1):127–137CrossRefGoogle Scholar
  116. 116.
    Wieshammer G, Unterbrunner R, Garcia TB, Zivkovic MF, Puschenreiter M, Wenzel WW (2007) Phytoextraction of Cd and Zn from agricultural soils by Salix ssp. and intercropping of Salix caprea and Arabidopsis halleri. Plant Soil [Internet] 298(1–2):255–264. http://link.springer.com/10.1007/s11104-007-9363-9 CrossRefGoogle Scholar
  117. 117.
    Dos SantosUtmazian MND, Wenzel WW (2007) Cadmium and zinc accumulation in willow and poplar species grown on polluted soils. J Plant Nutr Soil Sci Fur Pflanzenernahrung Und Bodenkd [Internet] 170(2):265–272. <Go to ISI>://000246417400011Google Scholar
  118. 118.
    Pietrini F, Zacchini M, Iori V, Pietrosanti L, Ferretti M, Massacci A (2010) Spatial distribution of cadmium in leaves and its impact on photosynthesis: examples of different strategies in willow and poplar clones. Plant Biol (Stuttg) [Internet] 12(2):355–363. http://www.ncbi.nlm.nih.gov/pubmed/20398241
  119. 119.
    Vollenweider P, Cosio C, Günthardt-Goerg MS, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.). Environ Exp Bot [Internet] 58(1–3):25–40. http://linkinghub.elsevier.com/retrieve/pii/S0098847205001048 CrossRefGoogle Scholar
  120. 120.
    Kabata-Pendias A, Pendias H (2001) Trace elements in soils, 3rd edn. CRC Press, Boca Raton, p 413Google Scholar
  121. 121.
    Almeida A-AF, Valle RR, Mielke MS, Gomes FP (2007) Tolerance and prospection of phytoremediator woody species of Cd, Pb, Cu and Cr. Braz J Plant Physiol 19:83–98Google Scholar
  122. 122.
    Vandecasteele B, Meers E, Vervaeke P, De Vos B, Quataert P, Tack FMG (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58(8):995–1002PubMedCrossRefGoogle Scholar
  123. 123.
    Liu Y, Chen CG, Zhang J, Shi X, Wang R (2011) Uptake of cadmium from hydroponic solutions by willows (Salix spp.) seedlings. Afr J Biotechnol 10(72):16209–16218Google Scholar
  124. 124.
    Nissim WG, Hasbroucq S, Kadri H, Pitre FE, Labrecque M (2015) Potential of selected Canadian plant species for phytoextraction of trace elements from selenium-rich soil contaminated by industrial activity. Int J Phytoremediation [Internet] 17(8):745–52. http://www.tandfonline.com/doi/full/10.1080/15226514.2014.987370
  125. 125.
    Pulford ID, Riddell-Black D, Stewart C (2002) Heavy metal uptake by willow clones from sewage sludge-treated soil: the potential for phytoremediation. Int J Phytoremediation [Internet] 4(1):59. http://search.ebscohost.com/login.aspx?direct=true&db=a9h&AN=7262728&site=ehost-live
  126. 126.
    Borišev M, Krstić B, Orlović S, Pilipović A, Nikolić N, Pajević S, Župunski M (2013) Antagonism between Cd and Ni in willows phytoextraction test. In: 13th international scientific conference “Sakharov Readings 2013: Environmental Problems of XXIst Century”, May 16-17th, Minsk, The Book of AbstractsGoogle Scholar
  127. 127.
    Pajević S, Borišev M, Nikolić N, Luković J, Župunski M, Arsenov D, Orlović S (2014) Phytoextraction of elevated heavy metals in soil by using fast growing trees (Salix sp. and Populus sp.). In: The international bioscience conference IBSC 29-30 September 2014, Phuket, Proceedings, pp 13–18Google Scholar
  128. 128.
    Hrynkiewicz K, Dabrowska G, Baum C, Niedojadlo K, Leinweber P (2012) Interactive and single effects of ectomycorrhiza formation and Bacillus cereus on metallothionein MT1 expression and phytoextraction of Cd and Zn by willows. Water Air Soil Pollut 223(3):957–968PubMedCrossRefGoogle Scholar
  129. 129.
    Kuzovkina J (2014) Stress tolerance in North American willow species. In: Isebrands JG, Richardson J (eds) Poplars and willows: trees for society and the environment. CABI, BostonGoogle Scholar
  130. 130.
    Watson C, Pulford ID, Riddell-Black D (2003) Screening of willow species for resistance to heavy metals: comparison of performance in a hydroponics system and field trials. Int J Phytoremediation 5:351–365PubMedCrossRefGoogle Scholar
  131. 131.
    Hermle S, Gunthardt-Goerg MS, Schulin R (2006) Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions. Environ Pollut 144:703–714PubMedCrossRefGoogle Scholar
  132. 132.
    Evangelou M, Robinson B, Günthardt-Goerg M, Schulin R (2013) Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Int J Phytoremediation 15:77–90PubMedCrossRefGoogle Scholar
  133. 133.
    Jensen JK, Holm PE, Nejrup J, Larsen MB, Borggaard OK (2009) The potential of willow for remediation of heavy metal polluted calcareous urban soils. Environ Pollut [Internet] 157(3):931–937. http://dx.doi.org/10.1016/j.envpol.2008.10.024 CrossRefGoogle Scholar
  134. 134.
    Li J-T, Baker AJM, Ye Z-H, Wang H-B, Shu W-S (2012) Phytoextraction of Cd-contaminated soils: current status and future challenges. Crit Rev Environ Sci Technol [Internet] 42(20):2113–2152. http://www.scopus.com/inward/record.url?eid=2-s2.0-84867723299&partnerID=tZOtx3y1 CrossRefGoogle Scholar
  135. 135.
    Kirkham MB (2006) Cadmium in plants on polluted soils: effects of soil factors, hyperaccumulation, and amendments. Geoderma 137:19–32CrossRefGoogle Scholar
  136. 136.
    Vervaeke P, Luyssaert S, Mertens J, Meers E, Tack FM, Lust N (2003) Phytoremediation prospects of willow stands on contaminated sediment: a field trial. Environ Pollut [Internet] 126(2):275–282. http://linkinghub.elsevier.com/retrieve/pii/S0269749103001891 CrossRefGoogle Scholar
  137. 137.
    Algreen M, Trapp S, Rein A (2014) Phytoscreening and phytoextraction of heavy metals at Danish polluted sites using willow and poplar trees. Environ Sci Pollut Res [Internet] 21(15):8992–9001. http://link.springer.com/10.1007/s11356-013-2085-z CrossRefGoogle Scholar
  138. 138.
    Katanić M, Kovačević B, Đorđević B, Kebert M, Pilipović A, Klašnja B et al (2015) Nickel phytoremediation potential of white poplar clones grown in vitro. Rom Biotechnol Lett 20:10085–10096Google Scholar
  139. 139.
    Kovačević B, Miladinović D, Orlović S, Katanić M, Kebert M, Kovinčić J (2013) Lead tolerance and accumulation in white poplar cultivated in vitro. SEEFFOR 4:3–12Google Scholar
  140. 140.
    Bojarczuk K (2004) Effect of toxic metals on the development of poplar (Populus tremula L. × P. alba L.) cultured in vitro. Pol J Environ Stud 13:115–120Google Scholar
  141. 141.
    Nikolić N, Borišev M, Krstić B, Pajević S, Pilipović A, Orlović S. (2011) Tolerance of Populus deltoides to soil contamination. In: Proceedings of the “STREPOW” international workshop; 2011 Feb 23-24; Andrevlje, Novi Sad, Serbia, pp 231–236.Google Scholar
  142. 142.
    Migeon A, Richaud P, Guinet F, Blaudez D, Chalot M (2012) Hydroponic screening of poplar for trace element tolerance and accumulation. Int J Phytoremediation 14:350–361PubMedCrossRefGoogle Scholar
  143. 143.
    Pilipović A, Orlović S, Nikolić N, Galić Z, Klašnja B, Borišev M, Krstić B (2011) The effect of heavy metal contamination on physiological parameters of five poplar (Populus sp.) clones. In: Proceedings of the “STREPOW” international workshop; 2011 Feb 23-24; Andrevlje, Novi Sad, Serbia; pp 237–243Google Scholar
  144. 144.
    Nikolić N, Krstić B, Orlović S, Pajević S, Borišev M, Pilipović A (2009) Bioindication and phytoremediation of cadmium and nickel contaminated environment using poplars. Экoлoгичecкий Becтник 3/4(9/10): 6–12Google Scholar
  145. 145.
    Sebastiani L, Scebba F, Tognetti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoides × maximowiczii) and I-214 (P. × euramericana) exposed to industrial waste. Environ Exp Bot 52:79–88CrossRefGoogle Scholar
  146. 146.
    Di Baccio D, Tognetti R, Sebastiani L, Vitagliano C (2003) Responses of Populus deltoides × P. nigra (P. × euramericana) clone I-214 to high zinc concentrations. New Phytol 159:443–452CrossRefGoogle Scholar
  147. 147.
    Laureysens I, De Temmerman L, Hastir T, Van Gysel M, Ceulemans R (2005) Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture. II. Vertical distribution and phytoextraction potential. Environ Pollut 133:541–551PubMedCrossRefGoogle Scholar
  148. 148.
    Simpson JA, Picchi G, Gordon AM, Thevathasan NV, Stanturf J, Nicholas I (2009) Short rotation crops for bioenergy systems. Task 30. Environmental benefits associated with short-rotation woody crops Technical Review No. 3 2009 IEA Bioenergy. http://www.ieabioenergytask43.org/Task_30_Web_Site/PDFs/Tech%20review%20No.%2003%20 for%20web.pdf. Accessed 9 Oct 2015
  149. 149.
    Dillen SY, Djomo SN, Al Afas N, Vanbeveren S, Ceulemans R (2013) Biomass yield and energy balance of a short rotation poplar coppice with multiple clones on degraded land during 16 years. Biomass Bioenergy 56:157–165CrossRefGoogle Scholar
  150. 150.
    Rockwood DL, Naidu CV, Carter DR, Rahmani M, Spriggs TA, Lin C, Alker GR, Isebrands JG, Segrest SA (2004) Short-rotation woody crops and phytoremediation: opportunities for agroforestry? Agrofor Syst 61–62:51–63Google Scholar
  151. 151.
    Rédei K, Osváth-Bujtás Z, Veperdi I (2008) Black locust (Robinia pseudoacacia L.) improvement in Hungary: a review. Acta Silv Lign Hung 4:127–132Google Scholar
  152. 152.
    Mertens J, Van Nevel L, De Schrijver A, Piesschaert F, Oosterbean A, Tack FMG, Verheyen K (2007) Tree species effect on the redistribution of soil metals. Environ Pollut 149:173–181PubMedCrossRefGoogle Scholar
  153. 153.
    Zhao X, Liu J, Xia X, Chu J, Wei Y, Shi S et al (2013) The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China. Environ Sci Pollut Res 21:5076–5085CrossRefGoogle Scholar
  154. 154.
    Župunski M, Borišev M, Orlović S, Arsenov D, Nikolić N, Pilipović A et al (2015) Hydroponic screening of black locust families for heavy metals tolerance and accumulation. Int J Phytoremediation 18(6):583–591Google Scholar
  155. 155.
    Rockwood DL, Rudie AW, Ralph SA, Zhu JY, Winandy JE (2008) Energy product options for eucalyptus species grown as short rotation woody crops. Int J Mol Sci 9:1361–1378PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Silva I, Novais R, Jham G, Barros N, Gebrim F, Nunes F et al (2004) Responses of eucalypt species to aluminum: the possible involvement of low molecular weight organic acids in the Al tolerance mechanism. Tree Physiol 24:1267–1277PubMedCrossRefGoogle Scholar
  157. 157.
    Assareh MH, Shariat A, Ghamari-Zare A (2008) Seedling response of three Eucalyptus species to copper and zinc toxic concentrations. Caspian J Environ Sci 6:97–103Google Scholar
  158. 158.
    Fine P, Rathod PH, Beriozkin A, Mingelgrin U (2013) Uptake of cadmium by hydroponically grown, mature Eucalyptus camaldulensis saplings and the effect of organic ligands. Int J Phytoremediation 15:585–600PubMedCrossRefGoogle Scholar
  159. 159.
    Pietrini F, Iori V, Bianconi D, Mughini G, Massacci A, Zacchini M (2015) Assessment of physiological and biochemical responses, metal tolerance and accumulation in two eucalypt hybrid clones for phytoremediation of cadmium-contaminated waters. J Environ Manage 162:221–231PubMedCrossRefGoogle Scholar
  160. 160.
    Coupe SJ, Sallami K, Ganjian E (2013) Phytoremediation of heavy metal contaminated soil using different plant species. Afr J Biotechnol 12(43):6185–6192CrossRefGoogle Scholar
  161. 161.
    Mughini G, Alianiello F, Benedetti A, Gras L, Gras M, Salvati L (2013) Clonal variation in growth, arsenic and heavy metal uptakes of hybrid Eucalyptus clones in a Mediterranean environment. Agrofor Syst 87:755–766CrossRefGoogle Scholar
  162. 162.
    Wang Y, Bai S, Wu J, Chen J, Yang Y, Zhu X (2015) Plumbum/zinc accumulation in seedlings of six afforestation species cultivated in mine spoil substrate. J Trop For Sci 27(2):166–175Google Scholar
  163. 163.
    Asensio V, Vega F, Singh B, Covelo E (2013) Effects of tree vegetation and waste amendments on the fractionation of Cr, Cu, Ni, Pb and Zn in polluted mine soils. Sci Total Environ 443:446–453PubMedCrossRefGoogle Scholar
  164. 164.
    Luo J, Qi S, Peng L, Xie X (2015) Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems. Bull Environ Contam Toxicol 94:321–325PubMedCrossRefGoogle Scholar
  165. 165.
    Doumett S, Lamperi L, Checchini L, Azzarello E, Mugnai S, Mancuso S, Petruzzelli G, Bubba M (2008) Heavy metal distribution between contaminated soil and Paulownia tomentosa, in a pilot-scale assisted phytoremediation study: influence of different complexing agents. Chemosphere 72:1481–1490PubMedCrossRefGoogle Scholar
  166. 166.
    Wang J, Zhang CB, Jin ZX (2009) The distribution and phytoavailability of heavy metal fractions in rhizosphere soils of Paulownia fortunei (seem) Hems near a Pb/Zn smelter in Guangdong, PR China. Geoderma 148(3–4):299–306CrossRefGoogle Scholar
  167. 167.
    Doumett S, Fibbi D, Azzarello E, Mancuso S, Mugnai S, Petruzzelli G, Del Bubba M (2010) Influence of the application renewal of glutamate and tartrate on Cd, Cu, Pb and Zn distribution between contaminated soil and Paulownia tomentosa in a pilot-scale assisted phytoremediation Study. Int J Phytoremediation 13:1–17Google Scholar
  168. 168.
    Gomes M, Marques TCLLS, Carneiro MML, Soares  (2012) Anatomical characteristics and nutrient uptake and distribution associated with the Cd-phytoremediation capacity of Eucalyptus camaldulenses Dehnh. J Soil Sci Plant Nutr 12:481–496Google Scholar
  169. 169.
    Arriagada C, Herrera M, Ocampo J (2005) Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water Air Soil Pollut 166:31–47CrossRefGoogle Scholar
  170. 170.
    Leite FP (2001) Nutritional relationships and chemical characteristics alterations in soils of the Rio Doce Valley caused by eucalyptus cultivation. PhD thesis, Federal University of Viçosa, Viçosa, 72 p. In Portuguese with English abstract.Google Scholar
  171. 171.
    Caparros S, Diaz MJ, Ariza J, Lopez F, Jimenez L (2008) New perspectives for Paulownia fortunei L. valorisation of the autohydrolysis and pulping processes. Bioresour Technol 99:741–749PubMedCrossRefGoogle Scholar
  172. 172.
    Azzarello E, Pandolfi C, Giordano C, Rossi M, Mugnai S, Mancuso S (2012) Ultramorphological and physiological modifications induced by high zinc levels in Paulownia tomentosa. Environ Exp Bot 81:11–17CrossRefGoogle Scholar
  173. 173.
    Kopponen P, Utriainen M, Lukkari K, Suntioinen S (2001) Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils. Environ Pollut 112:89–97PubMedCrossRefGoogle Scholar
  174. 174.
    Bojarczuk K, Kieliszewska-Rokicka B (2010) Effect of ectomycorrhiza on Cu and Pb accumulation in leaves and roots of silver birch (Betula pendula Roth.) seedlings grown in metal-contaminated soil. Water Air Soil Pollut 207:227–240CrossRefGoogle Scholar
  175. 175.
    Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668PubMedCrossRefGoogle Scholar
  176. 176.
    Gisbert C, Clemente R, Navarro-Aviñó J, Carlos Baixauli C, Ginér A, Serrano R, Walker DJ, Pilar Bernal MP (2006) Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56:19–26CrossRefGoogle Scholar
  177. 177.
    Bojarczuk K, Karolewski P, Oleksyn J, Kieliszewska-Rokicka B, Żytkowiak R, Tjoelker MG (2002) Effect of polluted soil and fertilisation on growth and physiology of silver birch (Betula pendula Roth.) seedlings. Pol J Environ Stud 11(5):483–492Google Scholar
  178. 178.
    Theriault G, Nkongolo K, Michael P (2014) Genetic and metal analyses of fragmented populations of Betula papyrifera (Marsh) in a mining reclaimed region: identification of population–diagnostic molecular marker. Ecol Evol 4(17):3435–3443PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Wisłocka M, Krawczyk J, Klink A, Morrison L (2006) Bioaccumulation of heavy metals by selected plant species from uranium mining dumps in the Sudety Mts., Poland. Pol J Environ Stud 15(5):811–818Google Scholar
  180. 180.
    Rockwood DL, Cardellino R, Alker G, Lin C, Brown N, Spriggs T, Tsangaris S, Isebrands J, Hall R, Lange R, Nwokike B (2004) Fast-growing trees for heavy metal and chlorinated solvent phytoremediation. In: Magar VS, Kelley ME (eds) In situ and on-site bioremediation-2003. Proceedings of the seventh international in situ and on-site bioremediation symposium, Orlando, FL, June 2–5, 2003, Paper F-12, Battelle Press, ColumbusGoogle Scholar
  181. 181.
    Sas-Nowosielska A, Kucharski R, Małkowski E, Pogrzeba M, Kuperberg JM, Kryński K (2004) Phytoextraction crop disposal—an unsolved problem. Environ Pollut 128:373–390PubMedCrossRefGoogle Scholar
  182. 182.
    Šyc M, Pohořely M, Kameníková P, Habart J, Svoboda K, Punčochár M (2012) Willow trees from heavy metals phytoextraction as energy crops. Biomass Bioenergy 37:106–113CrossRefGoogle Scholar
  183. 183.
    Keller C, Ludwig C, Davoli F, Wochele J (2005) Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environ Sci Technol 39(9):3359–3367PubMedCrossRefGoogle Scholar
  184. 184.
    Stals M, Carleer R, Reggers G, Schreurs S, Yperman J (2010) Flash pyrolysis of heavy metal contaminated hardwoods from phytoremediation: characterisation of biomass, pyrolysis oil and char/ash fraction. J Anal Appl Pyrolysis 89(1):22–29CrossRefGoogle Scholar
  185. 185.
    Delpanque M, Collet S, Gratta FD, Schnuriger B, Gaucher B, Bert V (2013) Combustion of Salix used for phytoextraction: the fate of metals and viability of the process. Biomass Bioenerg 49:160–170CrossRefGoogle Scholar
  186. 186.
    CL:AIRE (2004) Technical Bulletin TB7. Improving the reliability of contaminated land assessment using statistical methods: part 1. Basic principles and concepts. Rep. no., LondonGoogle Scholar
  187. 187.
    Punshon T, Dickinson NM (1999) Heavy metal resistance and accumulation characteristics in willows. Int J Phytoremediation 1:361–385CrossRefGoogle Scholar
  188. 188.
    Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393PubMedCrossRefGoogle Scholar
  189. 189.
    Kertész A, Madarász B (2014) Conservation agriculture in Europe. Int Soil Water Conserv Res 1(2):91–96CrossRefGoogle Scholar
  190. 190.
    Chaves MM, Maroco JP, Pereira JS (2003) Understanding plant responses to drought—from genes to the whole plant. Funct Plant Biol 30:239–264CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Slobodanka Pajević
    • 1
  • Milan Borišev
    • 1
  • Nataša Nikolić
    • 1
  • Danijela D. Arsenov
    • 1
  • Saša Orlović
    • 2
  • Milan Župunski
    • 1
    Email author
  1. 1.Faculty of Sciences, Department for Biology and EcologyUniversity of Novi SadNovi SadSerbia
  2. 2.Institute of Lowland Forestry and Environmental ProtectionUniversity of Novi SadNovi SadSerbia

Personalised recommendations