Advertisement

InterCriteria Analysis of Genetic Algorithms Performance

  • Olympia Roeva
  • Peter Vassilev
  • Stefka Fidanova
  • Marcin Paprzycki
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 655)

Abstract

In this paper we apply InterCriteria Analysis (ICrA) approach based on the apparatus of Index Matrices and Intuitionistic Fuzzy Sets. The main idea is to use ICrA to establish the existing relations and dependencies of defined parameters in a non-linear model of an E. coli fed-batch cultivation process. We perform a series of model identification procedures applying Genetic Algorithms (GAs). We proposed a schema of ICrA of ICrA results to examine the obtained model identification results. The discussion about existing relations and dependencies is performed according to criteria defined in terms of ICrA. We consider as ICrA criteria model parameters and GAs outcomes on the one hand, and 14 differently tuned GAs on the other. Based on the results, we observe the mutual relations between model parameters and GAs outcomes, such as computation time and objective function value. Moreover, some conclusions about the preferred tuned GAs for the considered model parameter identification in terms of achieved accuracy for given computation time are presented.

Keywords

InterCriteria analysis Index matrices Intuitionistic fuzzy sets Genetic algorithm Parameter identification E. coli Cultivation process 

Notes

Acknowledgments

The work presented here is partially supported by the Bulgarian National Scientific Fund under Grant DFNI-I02/5 and by the Polish-Bulgarian collaborative Grant “Parallel and Distributed Computing Practices”.

References

  1. 1.
    Angelova, M., Roeva, O., Pencheva, T.: InterCriteria analysis of crossover and mutation rates relations in simple genetic algorithm. In: Proceedings of the 2015 Federated Conference on Computer Science and Information Systems, pp. 419–424 (2015)Google Scholar
  2. 2.
    Atanassov, K.: Generalized index matrices. Comptes Rendus de l’Academie Bulgare des Sciences 40(11), 15–18 (1987)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Atanassov, K.: On index matrices, part 1: standard cases. Adv. Stud. Contemp. Math. 20(2), 291–302 (2010)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Atanassov, K.: On index matrices, part 2: intuitionistic fuzzy case. Proc. Jangjeon Math. Soc. 13(2), 121–126 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  6. 6.
    Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Iss. Intuitionistic Fuzzy Sets Gen. Nets 11, 1–8 (2014)Google Scholar
  7. 7.
    Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria analysis: ideas and problems. Not Intuitionistic Fuzzy Sets 21(1), 81–88 (2015)Google Scholar
  8. 8.
    Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors. Elsevier Scientific Publications, Amsterdam (1991)Google Scholar
  9. 9.
    Boussaid, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Doughabadi, M.H., Bahrami, H., Kolahan, F.: Evaluating the effects of parameters setting on the performance of genetic algorithm using regression modeling and statistical analysis. J. Ind. Eng. Spec. Iss. 61–68 (2011)Google Scholar
  11. 11.
    Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison Wesley Longman, London (2006)Google Scholar
  12. 12.
    Ilkova, T., Petrov, M.: Intercriteria analysis for identification of Escherichia coli fed-batch mathematical model. J. Int. Sci. Publ.: Mater., Meth. Technol 9, 598–608 (2015)Google Scholar
  13. 13.
    Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: InterCriteria analysis of genetic algorithm parameters in parameter identification. Notes Intuitionistic Fuzzy Sets 21(2), 99–110 (2015)Google Scholar
  14. 14.
    Pencheva, T., Angelova, M., Vassilev, P., Roeva, O.: InterCriteria analysis approach to parameter identification of a fermentation process model. Adv Intell Syst Comput 401, 385–397 (2016)CrossRefGoogle Scholar
  15. 15.
    Picek, S., Golub, M., Jakobovic, D.: Evaluation of crossover operator performance in genetic algorithms with binary representation. Bio-Inspired Computing and Applications. Lecture Notes in Computer Science, vol. 6840, pp. 223–230. Springer, Berlin (2011)CrossRefGoogle Scholar
  16. 16.
    Razali, N.M., Geraghty, J.: Genetic algorithm performance with different selection strategies in solving TSP. In: Proceedings of the World Congress on Engineering 2011 – WCE 2011, vol. II (2011)Google Scholar
  17. 17.
    Roeva, O.: Sensitivity analysis of E. coli fed-batch cultivation local models. Mathematica Balkanica. New Series 25(4), 395–411 (2011)zbMATHGoogle Scholar
  18. 18.
    Roeva, O., Vassilev, P.: InterCriteria analysis of generation gap influence on geneticalgorithms performance. Adv. Intell. Syst. Comput. 401, 301–313 (2016)CrossRefGoogle Scholar
  19. 19.
    Roeva, O., Pencheva, T., Hitzmann, B., Tzonkov, St.: A genetic algorithms based approach for identification of Escherichia coli fed-batch fermentation. Int. J. Bioautom. 1, 30–41 (2004)Google Scholar
  20. 20.
    Roeva, O., Fidanova, S., Paprzycki, M.: Influence of the population size on the genetic algorithm performance in case of cultivation process modelling. In: Proceedings of the 2013 Federated Conference on Computer Science and Information Systems, pp. 371–376 (2013)Google Scholar
  21. 21.
    Roeva, O., Pencheva, T., Tzonkov, S., Hitzmann, B.: Functional state modelling of cultivation processes: dissolved oxygen limitation state. Int. J. Bioautom. 19(1 Suppl.1), S93–S112 (2015)Google Scholar
  22. 22.
    Roeva, O., Fidanova, S., Paprzycki, M.: InterCriteria analysis of ACO and GA hybrid algorithms. Stud Comput Intell 610, 107–126 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Olympia Roeva
    • 1
  • Peter Vassilev
    • 1
  • Stefka Fidanova
    • 2
  • Marcin Paprzycki
    • 3
  1. 1.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of Information and Communication TechnologyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.System Research Institute Polish Academy of SciencesWarsaw and Management AcademyWarsawPoland

Personalised recommendations