InterCriteria Analysis by Pairs and Triples of Genetic Algorithms Application for Models Identification

  • Olympia Roeva
  • Tania Pencheva
  • Maria Angelova
  • Peter Vassilev
Part of the Studies in Computational Intelligence book series (SCI, volume 655)


In this investigation the InterCriteria Analysis (ICrA) approach is applied. The apparatuses of index matrices and intuitionistic fuzzy sets are at the core of ICrA. They are used to examine the influences of two main genetic algorithms (GA) parameters—the rates of crossover (xovr) and mutation (mutr). A series of parameter identification procedures for S. cerevisiae and E. coli fermentation process models is fulfilled. Twenty GA with different xovr and mutr values are applied. Relations between ICrA criteria—GA parameters and outcomes, on the one hand, and fermentation process model parameters, on the other hand, are investigated. The ICrA approach is applied by pairs, as well as by triples. The obtained results are thoroughly analysed towards computation time and model accuracy and some conclusions about the derived criteria interactions are reported.


InterCriteria analysis Index matrices Intuitionistic fuzzy sets Genetic algorithm Parameter identification Algorithm performance S. cerevisiae E. coli Fermentation 



The work is supported by the Bulgarian National Scientific Fund under the grant DFNI-I-02-5 “InterCriteria Analysis—A New Approach to Decision Making”.


  1. 1.
    Angelova, M.: Modified genetic algorithms and intuitionistic fuzzy logic for parameter identification of fed-batch cultivation Model. Ph.D. Thesis. Sofia (2014) (in Bulgarian)Google Scholar
  2. 2.
    Angelova, M., Tzonkov, St., Pencheva, T.: Modified multi-population genetic algorithm for yeast fed-batch cultivation parameter identification. Int. J. Bioautomation 13(4), 163–172 (2009)Google Scholar
  3. 3.
    Atanassov, K.: A new topological operator over intuitionistic fuzzy sets. Notes Intuit. Fuzzy Sets 21(3), 90–92 (2015)Google Scholar
  4. 4.
    Atanassov, K.: Generalized index matrices. Compt. rend. Acad. Bulg. Sci. 40(11), 15–18 (1987)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Atanassov, K.: Index Matrices: Towards an Augmented Matrix Calculus. Springer International Publishing, Switzerland (2014)Google Scholar
  6. 6.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefzbMATHGoogle Scholar
  7. 7.
    Atanassov, K.: On index matrices, part 1: standard cases. Adv. Stud. Contemp. Math. 20(2), 291–302 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Atanassov, K.: On index matrices, part 2: intuitionistic fuzzy case. Proc. Jangjeon Math. Soc. 13(2), 121–126 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Atanassov, K.: On index matrices. part 5: 3-dimensional index matrices. Adv. Stud. Contemp. Math. 24(4), 423–432 (2014)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Atanassov, K., Atanassova, V., Gluhchev, G.: InterCriteria analysis: ideas and problems. Notes Intuit. Fuzzy Sets 21(1), 81–88 (2015)Google Scholar
  11. 11.
    Atanassov, K., Mavrov, D., Atanassova, V.: Intercriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues Intuit. Fuzzy Sets Gen. Nets 11, 1–8 (2014)Google Scholar
  12. 12.
    Atanassov, K., Szmidt, E., Kacprzyk, J.: On intuitionistic fuzzy pairs. Notes Intuit. Fuzzy Sets 19(3), 1–13 (2013)zbMATHGoogle Scholar
  13. 13.
    Bastin, G., Dochain, D.: On-line Estimation and Adaptive Control of Bioreactors. Elsevier Scientific Publications, Amsterdam (1991)Google Scholar
  14. 14.
    Boussaid, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dickinson, R.J., Schweizer, M.: Metabolism and Molecular Physiology of Saccharomyces cerevisiae, 2nd edn. CRC Press, Florida (2004)Google Scholar
  16. 16.
    Goldberg, D.E.: Genetic algorithms in search, optimization and machine learning. Addison Wesley Longman, London (2006)Google Scholar
  17. 17.
    Lin, W., Lee, W., Hong, T.: Adapting crossover and mutation rates in genetic algorithms. J. Inf. Sci. Eng. 19, 889–903 (2003)Google Scholar
  18. 18.
    Matsuoka, Y., Shimizu, K.: Importance of understanding the main metabolic regulation in response to the specific pathway mutation for metabolic engineering of Escherichia coli. Comput. Struct. Biotechnol. J. 3(4), e201210018 (2012)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Pencheva, T., Angelova, M., Atanassova, V., Roeva, O.: InterCriteria analysis of genetic algorithm parameters in parameter identification. Notes Intuit. Fuzzy Sets 21(2), 99–110 (2015)Google Scholar
  21. 21.
    Pencheva, T., Hristozov, I., Huell, D., Hitzmann, B., Tzonkov, St.: Modelling of functional states during Saccharomyces cerevisiae fed-batch cultivation. Int. J. Bioautomation 2, 8–16 (2005)Google Scholar
  22. 22.
    Roeva, O., Pencheva, T., Hitzmann, B., Tzonkov, St.: A genetic algorithms based approach for identification of Escherichia coli fed-batch fermentation. Int. J. Bioautomation 1, 30–41 (2004)Google Scholar
  23. 23.
    Roeva, O., Fidanova, S.: Chapter 13. Application of genetic algorithms and ant colony optimization for modeling of E. coli cultivation process, In: Real-World Application of Genetic Algorithms. In Tech (2012)Google Scholar
  24. 24.
    Roeva, O.: Sensitivity analysis of E. coli fed-batch cultivation local models. Mathematica Balkanica. New Series 25(4), 395–411 (2011)zbMATHGoogle Scholar
  25. 25.
    Vassilev, P., Todorova, L., Andonov, V.: An auxiliary technique for InterCriteria Analysis via a three dimensional index matrix. Notes Intuit. Fuzzy Sets 21(2), 71–76 (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Olympia Roeva
    • 1
  • Tania Pencheva
    • 1
  • Maria Angelova
    • 1
  • Peter Vassilev
    • 1
  1. 1.Institute of Biophysics and Biomedical EngineeringBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations