SCENERY: A Web-Based Application for Network Reconstruction and Visualization of Cytometry Data

  • Giorgos Athineou
  • Giorgos Papoutsoglou
  • Sofia Triantafillou
  • Ioannis Basdekis
  • Vincenzo Lagani
  • Ioannis TsamardinosEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 477)


Cytometry techniques allow to quantify morphological characteristics and protein abundances at a single-cell level. Data collected with these techniques can be used for addressing the fascinating, yet challenging problem of reconstructing the network of protein interactions forming signaling pathways and governing cell biological mechanisms. Network reconstruction is an established and well studied problem in the machine learning and data mining fields, with several algorithms already available. In this paper, we present the first web-oriented application, SCENERY, that allows scientists to rapidly apply state-of-the-art network-reconstruction methods on cytometry data. SCENERY comes with an easy-to-use user interface, a modular architecture, and advanced visualization functions. The functionalities of the application are illustrated on data from a publicly available immunology experiment.


Cytometry CyTOF Network reconstruction Web application Signaling pathway 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ullrich, A., Schlessinger, J.: Signal transduction by receptors with tyrosine kinase activity. Cell 61(2), 203–212 (1990)CrossRefGoogle Scholar
  2. 2.
    Bendall, S., Nolan, G., Roederer, M., Chattopadhyay, P.: A Deep Profilers Guide to Cytometry. Trends Immunol. 33(7), 323–332 (2012)CrossRefGoogle Scholar
  3. 3.
    Marbach, D., Costello, J.C., Kffner, R., et. al.: Wisdom of crowds for robust gene network inference. Nat. Methods 9(8), 796–804 (2012)Google Scholar
  4. 4.
    Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science 308, 523–529 (2005)CrossRefGoogle Scholar
  5. 5.
    Itani, S., Ohannessian, M., Sachs, K., et. al.: Structure learning in causal cyclic networks. In: JMLR Workshop and Conference Proceedings (2010)Google Scholar
  6. 6.
    Qiu, P., Simonds, E.F., Bendall, S.C., et. al.: Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotech. 29, 886–891 (2011)Google Scholar
  7. 7.
    Lagani, V., Triantafillou, S., Ball, B., Tegner, J., Tsamardinos, I.: Probabilistic Computational Causal Discovery for Systems Biology. A Computational Modeling Approach. In: Uncertainty in Biology (2015)Google Scholar
  8. 8.
    Bik, H.M., Goldstein, M.C.: An Introduction to Social Media for Scientists. PLoS Biol. 11(4), e1001535 (2013). doi: 10.1371/journal.pbio.1001535
  9. 9.
    Kotecha, N., Krutzik, PO., Irish, JM.: Web-based Analysis and Publication of Flow Cytometry Experiments. Curr. Prot. Cyt., Chapter 10, Unit10.17. (2010)Google Scholar
  10. 10.
    Levine, J.H.., Simonds, E.F.., Bendall, S.C., et. al.: Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis. Cell (2015)Google Scholar
  11. 11.
    Kelkar, S. A.: Usability and Human-Computer Interaction: A Concise Study, p. 306 (2009)Google Scholar
  12. 12.
    Priem, J., Costello, K.L.: How and why scholars cite on Twitter. Proceedings of ASIST 47(1), 104 (2010)Google Scholar
  13. 13.
    Lagani, V., Athineou, G., Borboudakis, G. and Tsamardinos, I.: MXM: Discovering Multiple, Statistically-Equivalent Signatures. R package version 0.4.3. (2015).
  14. 14.
    Scutari, M.: Learning Bayesian Networks with the bnlearn R Package. JSS 35(3), 1–22 (2010).
  15. 15.
    Kalisch, M., Maechler, M., Colombo, D., Maathuis, M.H., Buehlmann, P.: Causal Inference Using Graphical Models with the R Package pcalg. JSS 47(11), 1–26 (2012).
  16. 16.
    Karampelas, P., Basdekis, I. and Stephanidis, C.: Web user interface design strategy: Designing for device independence. In: C. Stephanidis (ed.). Proceedings of the 13th International Conference on Human-Computer Interaction HCI International 2009, July 19-24, San Diego, CA, USA., pp. 515–524 (2009)Google Scholar
  17. 17.
    Bendall, S.C., Simonds, E.F., et al.: Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum. Science 332(6030), 687–696 (2011)CrossRefGoogle Scholar
  18. 18.
    Dal Porto, J., Gauld, S., Merrell, B cell antigen receptor signaling 101. Mol. Imm. 41, 599–613 (2004)Google Scholar
  19. 19.
    Ishiai, M., Kurosaki, M., Pappu, R., et al.: BLNK Required for Coupling Syk to PLCg2 and Rac1-JNK in B Cells. Imm. 10, 117–125 (1999)CrossRefGoogle Scholar
  20. 20.
    Guinamard, R., Signoret, N., Ishiai, et al.: B cell antigen receptor engagement inhibits stromal cell-derived factor (SDF)-1alpha chemotaxis and promotes protein kinase C (PKC)-induced internalization of CXCR4. J. Exp. Med. 189(9), 1461–1466 (1999)Google Scholar
  21. 21.
    Cargnello, M., Roux, P.: Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol. Mol. Biol. Rev. 75(1), 5083 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Giorgos Athineou
    • 1
  • Giorgos Papoutsoglou
    • 1
  • Sofia Triantafillou
    • 1
  • Ioannis Basdekis
    • 2
  • Vincenzo Lagani
    • 1
  • Ioannis Tsamardinos
    • 1
    Email author
  1. 1.Department of Computer ScienceUniversity of CreteHeraklionGreece
  2. 2.Foundation for Research and TechnologyHellas - Institute of Computer ScienceHeraklionGreece

Personalised recommendations