Advertisement

Role of Nerve Growth Factor Signaling in Cancer Cell Proliferation and Survival Using a Reachability Analysis Approach

  • Gustavo Santos-García
  • Carolyn Talcott
  • Adrián Riesco
  • Beatriz Santos-Buitrago
  • Javier De Las Rivas
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 477)

Abstract

Systems biology attempts to understand biological systems by their structure, dynamics, and control methods. Nerve growth factor (NGF) is a neuropeptide involved in cellular signaling that binds specific cell surface receptors in order to induce cellular proliferation and survival in different cell types or cell contexts. In this paper we perform a reachability analysis and we compute common elements in all possible solutions in our cases of interest with the help of Pathway Logic, which constitutes a rewriting logic formalism that provides a knowledge base and development environment to carry out model checking, searches, and executions of signaling systems. In conclusion, we provide a symbolic system that explores complex and dynamic cellular signaling processes that induce cellular proliferation and cellular survival.

Keywords

Signal transduction Symbolic systems biology Nerve growth factor Pathway logic Rewriting logic Maude 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: Maude Manual (Version 2.7), March 2015. http://maude.cs.illinois.edu/w/images/1/1a/Maude-manual.pdf
  2. 2.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: All about maude - a high-performance logical framework, how to specify, program and verify systems in rewriting logic. In: LNCS, vol. 4350. Springer (2007)Google Scholar
  3. 3.
    Donaldson, R., Talcott, C.L., Knapp, M., Calder, M.: Understanding signalling networks as collections of signal transduction pathways. In: Quaglia, P. (ed.) Computational Methods in Systems Biology, CMSB, pp. 86–95. ACM (2010)Google Scholar
  4. 4.
    Gratie, D., Iancu, B., Petre, I.: ODE analysis of biological systems. In: Bernardo, M., de Vink, E.P., Pierro, A.D., Wiklicky, H. (eds.) 13th Int. School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2013. LNCS, vol. 7938, pp. 29–62. Springer (2013)Google Scholar
  5. 5.
    Hartman, D.S., McCormack, M., Schubenel, R., Hertel, C.: Multiple trkA proteins in PC12 cells bind NGF with a slow association rate. J. Biol. Chem. 267(34), 24516–24522 (1992)Google Scholar
  6. 6.
    Martí-Oliet, N., Ölveczky, P.C., Talcott, C.L. (eds.) Logic, Rewriting, and Concurrency - Essays dedicated to José Meseguer on the occasion of his 65th birthday. LNCS, vol. 9200. Springer (2015)Google Scholar
  7. 7.
    Meseguer, J.: Twenty years of rewriting logic. J. Log Algebr. Program. 81(7–8), 721–781 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Molloy, N.H., Read, D.E., Gorman, A.M.: Nerve growth factor in cancer cell death and survival. Cancers 3(1), 510–530 (2011)CrossRefGoogle Scholar
  9. 9.
    National Cancer Institute (US): Cancer Genome Anatomy Project. http://cgap.nci.nih.gov/Pathways (2016) (accessed February 29, 2016)
  10. 10.
    Santos-García, G., De Las Rivas, J., Talcott, C.L.: A logic computational framework to query dynamics on complex biological pathways. In: Adv. Intell. Syst. Comput., vol. 294, pp. 207–214. Springer (2014)Google Scholar
  11. 11.
    Santos-García, G., Talcott, C.L., De Las Rivas, J.: Analysis of cellular proliferation and survival signaling by using two ligand/receptor systems modeled by pathway logic. In: HSB 2015, pp. 226–245 (2015) (revised selected papers)Google Scholar
  12. 12.
    Talcott, C.L.: Pathway logic. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) Formal methods for computational systems biology. In: 8th Int. School on Formal Methods for the Design of Computer, Communication, and Software Systems, SFM 2008. LNCS, vol. 5016, pp. 21–53. Springer (2008)Google Scholar
  13. 13.
    Talcott, C.L., Eker, S., Knapp, M., Lincoln, P., Laderoute, K.: Pathway logic modeling of protein functional domains in signal transduction. In: Markstein, P., Xu, Y. (eds.) Proceedings of 2nd IEEE Computer Society Bioinformatics Conf, CSB 2003, Stanford, CA, August 11-14, 2003, pp. 618–619. IEEE Computer Society (2003)Google Scholar
  14. 14.
    Weng, G., Bhalla, U.S., Iyengar, R.: Complexity in biological signaling systems. Science 284(5411), 92–96 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Gustavo Santos-García
    • 1
  • Carolyn Talcott
    • 2
  • Adrián Riesco
    • 3
  • Beatriz Santos-Buitrago
    • 4
  • Javier De Las Rivas
    • 5
  1. 1.University of SalamancaSalamancaSpain
  2. 2.Computer Science LaboratorySRI InternationalMenlo ParkUSA
  3. 3.Universidad Complutense de MadridMadridSpain
  4. 4.Seoul National UniversitySeoulSouth Korea
  5. 5.Cancer Research Center (CSIC/USAL) and IBSALSalamancaSpain

Personalised recommendations