Advertisement

Advancement in Numerical Simulations of Gas Hydrate Dissociation in Porous Media

  • Zhen Liu
  • Xiong YuEmail author
Chapter

Abstract

The amount of research on gas hydrates has been rising dramatically due to the significant role gas hydrates play as a persistent trouble for gas industry, a promising energy source, and a potential threat to environment. In the energy exploration perspective, numerical simulations play a major role in improving our understanding of the fundamentals gas hydrate dissociation as well as hydrate reservoir behaviors. This chapter presents an integrative review on the computer simulation models of gas hydrate dissociation, which have boomed since their first appearance in 1980s. Necessary background knowledge for gas hydrates and the existing investigations on this topic are firstly summarized. A unified framework is then developed for the purpose of integrating and classifying the existing models. The major mechanisms involved in the phase change process are illustrated and explained on the level of governing equations. The similarities and discrepancies among the models are demonstrated and discussed using this framework. Discussions continue on the auxiliary relationships for describing the material properties based on their categories. The various auxiliary relationships employed in the existing computational models are summarized and compared. Finally, the results obtained by previous simulations as well as other laboratory or field data are discussed. Noteworthy trends in the numerical simulations of gas hydrates behaviors are also unveiled. Recommendations are provided for future research. By providing an overview of the topic area, this chapter intends to provide scientific basis to understand the existing gas hydrate simulation models as well as serve as a guide for future research on advanced gas hydrate simulations.

Keywords

Porous Medium Relative Permeability Absolute Permeability Methane Hydrate Hydrate Dissociation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This work is partially supported by the US National Science Foundation via project CMMI-0856407.

References

  1. 1.
    Selim M. S. & Sloan, E. D. (1985). Modeling of the dissociation of in-situ hydrate. SPE 1985 California Regional Meeting, Bakersfield, CA, March 27–29.Google Scholar
  2. 2.
    Bishnoi, P. R., & Natarajan, V. (1996). Formation and decomposition of gas hydrates. Fluid Phase Equilibria, 117, 168–177.CrossRefGoogle Scholar
  3. 3.
    Englezos, P. (1993). Clathrate hydrates. Industrial and Engineering Chemistry Research, 32, 1251–1274.CrossRefGoogle Scholar
  4. 4.
    Kneafsey, T. J., Tomutsa, L., Moridis, G. J., Seol, Y., Freifeld, B. M., Taylor, C. E., et al. (2007). Methane hydrate formation and dissociation in a partially saturated core-scale sand sample. Journal of Petroleum Science and Engineering, 56, 108–126.CrossRefGoogle Scholar
  5. 5.
    Bayles, G. A., Sawyer, W. K., & Malone, R. D. (1986). A steam cycling model for gas production from a hydrate reservoir. Chemical Engineering Communication, 47, 225–245.CrossRefGoogle Scholar
  6. 6.
    Holder, G. D., & Angert, P. F. (1982). Simulation of gas production from a reservoir containing both gas hydrates and free natural gas. SPE Annual Technical Conference and Exhibition, 26–29 September 1982, New Orleans, Louisiana.Google Scholar
  7. 7.
    Ahmadi, G., Ji, C., & Smith, D. H. (2007). Natural gas production from hydrate dissociation: an axisymmetric model. Journal of Petroleum Science and Engineering, 58, 245–258.CrossRefGoogle Scholar
  8. 8.
    Hong, H., Pooladi-Darvish, M., & Bishnoi, P. R. (2003). Analytical modeling of gas production from hydrates in porous media. Journal of Canadian Petroleum Technology, 42(11), 45–56.CrossRefGoogle Scholar
  9. 9.
    Katz, D. L. (1971). Depths to which frozen gas fields (gas hydrates) may be expected. Journal of Petroleum Technology, 23(4), 419–423.CrossRefGoogle Scholar
  10. 10.
    Makogon, Y. F. (1965). Hydrate formation in the gas-bearing beds under permafrost conditions. Gazovaia Promyshlennost, 5, 14–15.Google Scholar
  11. 11.
    Makogon, Y. F. (1997). Hydrates of natural gas. Tulsa, Oklahoma: Penn Well Books.Google Scholar
  12. 12.
    Sun, X., Nanchary, N., & Mohanty, K. K. (2005). 1-D modeling of hydrate depressurization in porous media. Transport in Porous Media, 58, 315–338.CrossRefGoogle Scholar
  13. 13.
    Janicki, G., Schluter, S., Hennig, T., Lyko, H., & Deergerg, G. (2011). Simulation of methane recovery from gas hydrates combined with storing carbon dioxide as hydrates. Journal of Geological Research, 2011, 1–15.CrossRefGoogle Scholar
  14. 14.
    Phale, H. A., Zhu, T., White, M. D., & McGrail B. P. (2006). Simulation study on injection of CO2-microemulsion for methane recovery from gas hydrate reservoirs. SPE Gas Technology Symposium, Calgary, Alberta, Canada, 15–17 May 2006.Google Scholar
  15. 15.
    Burshears, M., O’Brien, T. J., & Malone, R. D. (1986). A multi-phase, multi-dimensional, variable composition simulation of gas production from a conventional gas reservoir in contact with hydrates. Unconventional Gas Technology Symposium of the Society of Petroleum Engineers, Louisville, KY, May 18–21.Google Scholar
  16. 16.
    Rempel, A. W., & Buffett, B. A. (1997). Formation and accumulation of gas hydrate in porous media. Journal of Geophysical Research, 102(5), 151–164.Google Scholar
  17. 17.
    Kvenvolden, K. A., Carlson, P. R., & Threlkeld, C. N. (1993). Possible connection between two Alaskan catastrophes occurring 25 years apart (1964 and 1989). Geology, 21, 813–816.CrossRefGoogle Scholar
  18. 18.
    Booth, J. S., Rowe, M. M., & Fischer, K. M. (1996). Offshore gas hydrate sample database with an overview and preliminary analysis. U.S. Geological Survey, Open File Report 96-272, Denver, Colorado.Google Scholar
  19. 19.
    MacDonald, G. J. (1990). The future of methane as an energy resource. Annual Review of Energy, 15, 53–83.CrossRefGoogle Scholar
  20. 20.
    White, M. D., & McGrail, B. P. (2008). Numerical simulation of methane hydrate production from geologic formations via carbon dioxide injection. 2008 Offshore Technology Conference, Houston, Texas, 5–8 May.Google Scholar
  21. 21.
    Nazridoust, K., & Ahmadi, G. (2007). Computational modeling of methane hydrate dissociation in a sandstone core. Chemical Engineering Science, 62, 6155–6177.CrossRefGoogle Scholar
  22. 22.
    Sun, X., & Mohanty, K. K. (2006). Kinetic simulation of methane hydrate formation and dissociation in porous media. Chemical Engineering Science, 61, 3476–3495.CrossRefGoogle Scholar
  23. 23.
    Hammerschmidt, E. G. (1934). Formation of gas hydrates in natural gas transmission lines. Industrial, 26(8), 851–855.Google Scholar
  24. 24.
    Makogon, Y. F., Holditch, S. A., & Makogon, T. Y. (2007). Natural gas-hydrates—a potential energy source for the 21st Century. Journal of Petroleum Science and Engineering, 56, 14–31.CrossRefGoogle Scholar
  25. 25.
    Maksimov, A. M. (1992). Mathematical model of the volume dissociation of gas-phase hydrates in a porous medium with water-phase mobility. Moscow: Institute for Gas and Oil Problems, Academy of Sciences of the USSR and GKNO of the USSR.Google Scholar
  26. 26.
    Dickens, G. R. (2003). Rethinking the global carbon cycle with a large dynamic and microbially mediated gas hydrate capacitor. Earth and Planetary Science Letters, 213, 169–183.CrossRefGoogle Scholar
  27. 27.
    Kennett, J. P., Cannariato, K. G., Hendy, I. L., & Behl, R. J. (2000). Carbon isotopic evidence for methane hydrate stability during Quaternary Interstadials. Science, 288, 128–133.CrossRefGoogle Scholar
  28. 28.
    Kayen, R. E., & Lee, H. J. (1991). Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort Sea margin. Marine Georesources & Geotechnology, 10, 125–141.CrossRefGoogle Scholar
  29. 29.
    Paull, C. K., Buelow, W. J., Ussler, W., & Borowski, W. S. (1996). Increased continental-margin slumping frequency during sea-level lowstands above gas hydrate-bearing sediments. Geology, 24, 143–146.CrossRefGoogle Scholar
  30. 30.
    Moridis, G. J., & Sloan, E. D. (2006). Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments. LBNL-52568, Berkeley, CA: Lawrence Berkeley National Laboratory.Google Scholar
  31. 31.
    Moridis, G. J., & Collett, T. S. (2003). Strategies for gas production from hydrate accumulations under various geologic conditions. LBNL-52568, Berkeley, CA: Lawrence Berkeley National LaboratoryGoogle Scholar
  32. 32.
    Moridis, G. J., Kneafsey, T. J., Kowalsky, M., & Reagan, M. (2006). Numerical, laboratory and field studies of gas production from natural hydrate accumulations in geologic media. Berkeley, CA: Earth Science Division, Lawrence Berkeley National Laboratory.Google Scholar
  33. 33.
    Esmaeilzadeh, F., Zeighami, M. E., & Fathi, J. (2008). 1-D modeling of hydrate decomposition in porous media. Proceedings of World Academy of Science, Engineering and Technology, 41, 647–653.Google Scholar
  34. 34.
    Hyndman, R. D., & Davis, E. E. (1992). A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res., 97, 7025–7041.CrossRefGoogle Scholar
  35. 35.
    Kowalsky, M. B., & Moridis, G. J. (2007). Comparison of kinetic and equilibrium reaction models in simulating gas hydrate behavior in porous media. Berkeley, CA: Earth Science Division, Lawrence Berkeley National Laboratory.Google Scholar
  36. 36.
    Uddin, M., Coombe, D., Law, D., & Gunter, B. (2008). Numerical studies of gas hydrate formation and decomposition in a geological reservoir. Journal of Energy Resources Technology, 130, 032501-1–032501-14.Google Scholar
  37. 37.
    White, M. D., Wurstner, S. K., & McGrail, B. P. (2009). Numerical studies of methane production from Class 1 gas hydrate accumulations enhanced with carbon dioxide injection. Marine and Petroleum Geology, 28(2), 546–560.CrossRefGoogle Scholar
  38. 38.
    Goel, N. (2006). In situ methane hydrate dissociation with carbon dioxide sequestration: current knowledge and issues. Journal of Petroleum Science and Engineering, 51, 169–184.CrossRefGoogle Scholar
  39. 39.
    Kamath, V. A., & Godbole, S. P. (1987). Evaluation of hot-brine simulation technique for gas production from natural gas hydrates. Journal of Petroleum Technology, 39, 1379–1388.Google Scholar
  40. 40.
    Sloan, E. D., & Koh, C. A. (2007). Clathrate hydrates of natural gases (3rd ed.). Boca Raton: CRC Press.CrossRefGoogle Scholar
  41. 41.
    Graue, A., Kvamme, B., Baldwin, B., Stevens, J., Howard, J., & Aspenes, E. (2006). Environmentally friendly CO2 storage in hydrate reservoirs benefits from associated spontaneous methane production. In Proceedings of the Offshore Technology Conference (OTC-18087), Huston, Texas, United States.Google Scholar
  42. 42.
    Stevens, J., Howard, J., Baldwin, B., Ersland, B., Huseb, J., & Graue, A. (2008). Experimental hydrate formation and production scenarios based on CO2 sequestration. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008), Vancouver, British Columbia, Canada, July 6–10, 2008.Google Scholar
  43. 43.
    McGruire, P. L. (1982). Methane hydrate gas production by thermal stimulation. Proceedings of the Fourth Canadian Permafrost Conference, H.M. French (ed.), Calgary.Google Scholar
  44. 44.
    Selim, M. S., & Sloan, E. D. (1990). Hydrate dissociation in sediments. SPE Reservoir Engineering, 5(2), 245–251.CrossRefGoogle Scholar
  45. 45.
    Yousif, M. H., Abass, H. H., Selim, M. S., & Sloan, E. D. (1991). Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media. SPE Reservoir Engineering, 6(1), 69–76.CrossRefGoogle Scholar
  46. 46.
    Guo, T., Wu, B., Zhu, Y., Fan, S., & Chen, G. (2004). A review on the gas hydrate research in China. Journal of Petroleum Science and Engineering, 41, 11–20.CrossRefGoogle Scholar
  47. 47.
    Sloan, E. D. (2003). Clathrate hydrate measurements: microscopic mesoscopic, and macroscopic. The Journal of Chemical Thermodynamics, 35, 41–53.CrossRefGoogle Scholar
  48. 48.
    Pooladi-Darvish, M. (2004). Gas production from hydrate reservoirs and its modeling. Society of Petroleum Engineers, 56(6), 65–71.Google Scholar
  49. 49.
    Davy, H. (1881). The bakerian lecture on some of the combinations of oxymuriatic gas and oxygen, and on the chemical relations of these principles to inflammable bodies. Philosophical Transactions of the Royal Society, London 1811,101, (Part I), pp. 1-35.Google Scholar
  50. 50.
    Faraday, M. (1823). On fluid chlorine. Philosophical Transactions of the Royal Society B: Biological Sciences, London, 113, 160–165.CrossRefGoogle Scholar
  51. 51.
    Davidson, D. W. (1973). Gas hydrates. In F. Frank (Ed.), Water: A comprehensive treatise (Vol. 2, pp. 115–234). New York: Plenum Press. Chapter 3.Google Scholar
  52. 52.
    Deaton, W. M., & Frost, E. M. Jr. (1946). US Bureau of Mines Monograph 8, No. 8.Google Scholar
  53. 53.
    Chersky, N. J., & Makogon, Y. F. (1970). Solid gas world reserves are enormous. Oil Gas International, 10(8), 82–84.Google Scholar
  54. 54.
    Makogon, Y. F., Trebin, F. A., Trofimuk, A. A., Tsarev, V. P., & Chersky, N. V. (1972). Detection of a pool of natural gas in a solid (hydrate gas) state. Doklady Akademii Nauk SSSR, 196, 203–206. originally published in Russian, 1971.Google Scholar
  55. 55.
    Shipley, T. H., Houston, K. J., Buffler, R. T., Shaub, F. J., McMillen, K. J., Ladd, J. W., et al. (1979). Seismic evidence for widespread possible gad hydrate horizons on continental slopes and rises. American Association of Petroleum Geologists Bulletin, 63, 2204–2213.Google Scholar
  56. 56.
    Stoll, R. D., & Bryan, G. M. (1979). Physical properties of sediments containing gas hydrates. Journal of Geophysical Research, 84, 1629–1634.CrossRefGoogle Scholar
  57. 57.
    Finlay, P., & Krason, J. (1990). Evaluation of geological relationships to gas hydrate formation and stability: Summary report., Gas Energy Rev. Vol., 18, 12–18.Google Scholar
  58. 58.
    Beauchamp, B. (2004). Natural gas hydrates: myths facts and issues. Comptes Rendus Geoscience, 226, 751–765.CrossRefGoogle Scholar
  59. 59.
    Kim, J., Yang, D., & Rutqvist, J. (2011). Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits. SPE Reservoir Simulation Symposium, Woodlands, Texas, 21–23 February.Google Scholar
  60. 60.
    Klar, A., & Soga, K. (2005). Coupled deformation-flow analysis for methane hydrate production by depressurized wells. Proceeding of 3rd International Biot Conference on Poromechanics, pp. 653–659.Google Scholar
  61. 61.
    Koh, C. A., & Sloan, E. D. (2007). Natural gas hydrates: recent advances and challenges in energy and environmental applications. American Institute of Chemical Engineers, 53(7), 1636–1643.CrossRefGoogle Scholar
  62. 62.
    Kwon, T., Song, K., & Cho, G. (2010). Destabilization of marine gas hydrate-bearing sediments induced by a hot wellbore: a numerical approach. Energy Fuels, 24, 5493–5507.CrossRefGoogle Scholar
  63. 63.
    Li, L., Cheng, Y., Zhang, Y., Cui, Q., & Zhao, F. (2011). A fluid-solid coupling model of wellbore stability for hydrate bearing sediments. Procedia Engineering, 18, 363–368.CrossRefGoogle Scholar
  64. 64.
    Rutqvist, J., Moridis, G. J., Grover, T., & Collett, T. (2009). Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. Journal of Petroleum Science and Engineering, 67, 1–12.CrossRefGoogle Scholar
  65. 65.
    Yamamoto, K. (2008). Methane hydrate bearing sediments: a new subject of geomechanics. The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), 1–6 October 2008, Goa, India.Google Scholar
  66. 66.
    Gudmundsson, J., & Borrehaug, A. (1996) Frozen hydrate for transport of natural gas. Proc. 2nd Int. Conf.on Natural Gas Hydrates, pp. 415–422.Google Scholar
  67. 67.
    Gudmundsson, J., Andersson, V., Levik, O. I., Mork, M., & Borrehaug, A. (2000). Hydrate technology for capturing stranded gas. Ann. NY Acad. Science, 912, 403–410.CrossRefGoogle Scholar
  68. 68.
    Stern, L. A., Circone, S., Kirby, S. H., & Durham, W. B. (2001). Anomalous preservation of pure methane hydrate at 1 atm. The Journal of Physical Chemistry, 105(9), 1756–1762.CrossRefGoogle Scholar
  69. 69.
    Takaoki, T., Hirai, K., Kamei, M., & Kanda, H. (2005). Study of natural gas hydrate (NGH) carriers. Proceedings of the Fifth International Conference on Natural Gas Hydrates, June 13-16, Trondheim, Norway. Paper 4021.Google Scholar
  70. 70.
    Florusse, L. J., Peters, C. J., Schoonman, J., Hester, K. C., Koh, C. A., Dec, S. F., et al. (2004). Stable low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science., 306(5695), 469–471.CrossRefGoogle Scholar
  71. 71.
    Mao, W. L., Mao, H., Goncharov, A. F., Struzhkin, V. V., Guo, Q., Hu, J., et al. (2002). Hydrogen clusters in clathrate hydrate. Science, 297, 2247–2249.CrossRefGoogle Scholar
  72. 72.
    Hunt, S. C. (1992). Gas hydrate thermal energy storage system. United States Patent No. 5140824.Google Scholar
  73. 73.
    Guo, K. H., Shu, B. F. & Yang, W. J. (1996). Advances and applications of gas hydrate thermal energy storage technology. Proceedings of 1st Trabzon Int. Energy and EnvironmentGoogle Scholar
  74. 74.
    Chen, G. J., Sun, C. Y., Ma, C. F., & Guo, T. M. (2002). A new technique for separating (Hydrogen + Methane) gas mixtures using hydrate technology. Proceedings of the 4th International Conference on Gas Hydrates, May 19-23, 2002, Yokohama, Japan, pp. 1016–1020.Google Scholar
  75. 75.
    Pawar, R. J., & Zyvoloski, G. A. (2005). Numerical simulation of gas production from methane hydrate reservoirs. Proceedings of the Fifth International Conference on Gas Hydrates, Trondheim, Norway, pp. 259–267.Google Scholar
  76. 76.
    McGuire, P. L. (1981). Methane hydrate gas production by thermal stimulation. Proceedings of the Fourth Canadian Permafrost Conference, March 2-6, 1981, Calgary, Alberta.Google Scholar
  77. 77.
    Goel, N., Wiggins, M., & Shah, S. (2001). Analytical modeling of gas recovery from in situ hydrates dissociation. Journal of Canadian Petroleum Technology, 29, 115–127.Google Scholar
  78. 78.
    Ji, C., Ahmadi, G., & Smith, D. H. (2001). Natural gas production from hydrate decomposition by depressurization. Chemical Engineering Science, 56, 5801–5814.CrossRefGoogle Scholar
  79. 79.
    Vasil’ev, V. N., Popov, V. V., & Tsypkin, G. G. (2006). Numerical investigation of the decomposition of gas hydrates coexisting with gas in natural reservoirs. Fluid Dynamics, 41(4), 599–605.zbMATHCrossRefGoogle Scholar
  80. 80.
    Bai, Y., Li, Q., Li, X., & Du, Y. (2008). The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Science in China Series E: Technological Sciences, 51(8), 1272–1282.zbMATHCrossRefGoogle Scholar
  81. 81.
    Bai, Y., Li, Q., Li, X., & Du, Y. (2008). The simulation of nature gas production from ocean gas hydrate reservoir by depressurization. Science in China Series E: Technological Sciences, 51(8), 1272–1282.zbMATHCrossRefGoogle Scholar
  82. 82.
    Tsypkin, G. G. (2007). Analytical solution of the nonlinear problem of gas hydrate dissociation in a formation. Fluid Dynamics, 42(5), 798–806.MathSciNetzbMATHCrossRefGoogle Scholar
  83. 83.
    Gerami, S., & Pooladi-Darvish, M. (2007). Predicting gas generation by depressurization of gas hydrates where the sharp-interface assumption is not valid. Journal of Petroleum Science and Engineering, 56, 146–164.CrossRefGoogle Scholar
  84. 84.
    Hong, H., & Pooladi-Darvish, M. (2005). Simulation of depressurization for gas production from gas hydrate reservoirs. Journal of Canadian Petroleum Technology, 44(11), 39–46.CrossRefGoogle Scholar
  85. 85.
    Mandelcorn, L. (1959). Clathrates. Chemical Reviews, 59, 827–839.CrossRefGoogle Scholar
  86. 86.
    van der Waals, J. H., & Platteeuw, J. C. (1959). Clathrate Solutions. Advances in Chemical Physics, 2, 1–57.Google Scholar
  87. 87.
    Byk, S. S., & Fomina, V. J. (1968). Gas Hydrates. Russian Chemical Reviews, 37(6), 469–491.CrossRefGoogle Scholar
  88. 88.
    Hand, J. H., Katz, D. L., & Verma, V. K. (1974). Review of gas hydrates with implication for ocean sediments. In I. R. Kaplan (Ed.), Natural Gases in Marine Sediments (pp. 179–194). New York: Plenum.CrossRefGoogle Scholar
  89. 89.
    Jeffrey, G. A., & McMullan, R. K. (1967). The clathrate hydrates. Progress in inorganic chemistry, 8, 43–108.CrossRefGoogle Scholar
  90. 90.
    Jeffrey, G. A. (1984). Hydrate inclusion compounds. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1(3), 211–222.CrossRefGoogle Scholar
  91. 91.
    Holder, G. D., Zetts, S. P., & Pradham, N. (1988). Phase behavior in systems containing clathrate hydrates. Reviews in Chemical Engineering, 5(l), 1–69.CrossRefGoogle Scholar
  92. 92.
    Makogon, Y. F. (1981). Hydrates of natural gas. Tulsa, OK: Penn Well Publishing. (translated by W. J. Cieslewicz).Google Scholar
  93. 93.
    Berecz, E., & Balla-Achs, M. (1983). Studies in Inorganic Chemistry 4: Gas Hydrates (pp. 184–188). Amsterdam: Elsevier.Google Scholar
  94. 94.
    Cox, J. L. (1983). Natural gas hydrates: Properties, occurrence and recovery. Woburn, MA: Butterworth Publiehere.Google Scholar
  95. 95.
    Sloan, E. D. (1990). Clathrate hydrates of natural gases. New York: Dekker.Google Scholar
  96. 96.
    Sloan, E. D., Jr. (1998). Clathrate hydrates of natural gases (2nd ed.). New York, NY: Marcel Deckker Inc.Google Scholar
  97. 97.
    Buffett, B. A. (2000). Clathrate hydrates. Annual Review of Earth and Planetary Sciences, 28, 477–507.CrossRefGoogle Scholar
  98. 98.
    Koh, C. A. (2002). Towards a fundamental understanding of natural gas hydrates. Chemical Society Reviews, 31, 157–167.CrossRefGoogle Scholar
  99. 99.
    Waite, W. F., Santamarina, J. C., Cortes, D. D., Dugan, B., Espinoza, D. N., Germaine, J., et al. (2009). Physical properties of hydrate-bearing soils. Reviews of Geophysics, 47, RG4003.CrossRefGoogle Scholar
  100. 100.
    Sung, W., Lee, H., Lee, H., & Lee, C. (2002). Numerical study for production performances of a methane hydrate reservoir stimulated by inhibitor injection. Energy Sources, 24, 499–512.CrossRefGoogle Scholar
  101. 101.
    Tonnet, N., & Herri, J. M. (2009). Methane hydrates bearing synthetic sediments-experimental and numerical approaches of the dissociation. Chemical Engineering Science, 64(19), 4089–4100.CrossRefGoogle Scholar
  102. 102.
    Yu, F., Song, Y., Liu, W., Li, Y., & Lam, W. (2011). Analyses of stress strain behavior and constitutive model of artificial methane hydrate. Journal of Petroleum Science and Engineering, 77, 183–188.CrossRefGoogle Scholar
  103. 103.
    Bagheri, M., & Settari, A. (2008). Modeling of geomechanics in naturally fractured reservoirs. SPE Reservoir Evaluation & Engineering, 11(1), 108–118.CrossRefGoogle Scholar
  104. 104.
    Freeman, T. L, Chalatumyk, R. J., & Bogdanov, I. I. (2009). Geomechanics of heterogeneous bitumen carbonates. SPE Reservoir Simulation Symposium, 2-4 February 2009, The Woodlands, Texas.Google Scholar
  105. 105.
    Kosloff, D., Scott, R., & Scranton, J. (1980). Finite element simulation of Wilmington oil field subsidence: I linear modelling. Tectonophysics, 65, 339–368.CrossRefGoogle Scholar
  106. 106.
    Lewis, R. W., & Schreflei, B. A. (1998). The finite element method in the deformation and consolidation of porous media. Wiley, Chichester, Great Britain, 2nd edition.Google Scholar
  107. 107.
    Merle, H. A., Kentie, C. J. P., van Opstal, G. H. C., & Schneider, G. M. G. (1976). The Bachaquero study—a composite analysis of the behavior of a compaction drive/solution gas drive reservoir. Journal of Petroleum Technology, 28(9), 1107–1115.CrossRefGoogle Scholar
  108. 108.
    Morris, J. P. (2009). Simulations of injection-induced mechanical deformation: A study of the In Salah CO2 storage project. Society of Exploration Geophysicists 2009 Summer Research Workshop, Banff, Canada, August, 2009.Google Scholar
  109. 109.
    Rutqvist, J., & Moridis, G. J. (2009). Numerical Studies on the Geomechanical Stability of Hydrate-Bearing Sediments. SPE Journal, 14(2), 267–282.CrossRefGoogle Scholar
  110. 110.
    Allen, M. B. (1954). In: M.B. Allen, G.A. Behie, and J.A. Trangenstein (Eds.), Multiphase flow in porous media: Mechanics, mathematics, and numerics. New York, Berlin: Springer-Verlag, 1988.Google Scholar
  111. 111.
    Kimoto, S., Oka, F., Fushita, T., & Fujiwaki, M. (2007). A chemo-thermo-mechanically coupled numerical simulation of the subsurface ground deformations due to methane hydrate dissociation. Computers and Geotechnics, 34, 216–228.CrossRefGoogle Scholar
  112. 112.
    Garg, S. K., Pritchett, J. W., Katoh, A., Baba, K., & Fujii, T. (2008). A mathematical model for the formation and dissociation of methane hydrates in the marine environment. Journal of Geophysical Research, 113, B01201.CrossRefGoogle Scholar
  113. 113.
    Phirani, J., & Mohanty, K. L. (2010). Kinetic simulation of CO 2 flooding of methane hydrates. SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September.Google Scholar
  114. 114.
    Liu, Y., & Gamwo, I. K. (2012). Comparison between equilibrium and kinetic models for methane hydrate dissociation. Chemical Engineering Science, 69, 193–200.CrossRefGoogle Scholar
  115. 115.
    Tsypkin, G. G. (1998). Decomposition of gas hydrates in low-temperature reservoirs. Fluid Dynamics, 33(1), 82–90.zbMATHCrossRefGoogle Scholar
  116. 116.
    Ruan, X., Song, Y., Zhao, J., Liang, H., Yang, M., & Li, Y. (2012). Numerical simulation of methane production from hydrates induced by different depressurizing approaches. Energies, 5, 438–458.CrossRefGoogle Scholar
  117. 117.
    Liu, X., & Flemings, P. B. (2007). Dynamics multiphase flow model of hydrate formation in marine sediments. Journal of Geophysical Research, 112, B03101.Google Scholar
  118. 118.
    Liu, Y., Strumendo, M., & Arastoopour, H. (2008). Numerical simulation methane production from a methane hydrate formation. Industrial & Engineering Chemistry Research, 47, 2817–2828.CrossRefGoogle Scholar
  119. 119.
    Masuda, Y., Kurihara, M., Ohuchi, H., & Sato, T. (2002). A field-scale simulation study on gas productivity of formations containing gas hydrates. Proceedings of 4th International Conference on Gas Hydrates, Yokohama, Japan, May 19–23.Google Scholar
  120. 120.
    Schnurle, P., & Liu, C. (2011). Numerical modeling of gas hydrate emplacements in oceanic sediments. Marine and Petroleum Geology, 28, 1856–1869.CrossRefGoogle Scholar
  121. 121.
    Scott, D. M., Das, D. K., & Subbaihaannadurai, V. (2006). A finite element computational method for gas hydrate. Part I: theory. Petroleum Science and Technology, 24, 895–909.CrossRefGoogle Scholar
  122. 122.
    Campbell, G. S. (1985). Soil physics with BASIC: transport models for soil-plant systems (1st ed.). BV Amsterdam, Netherlands: Elsevier Sci.Google Scholar
  123. 123.
    De Vries, D. A. (1963). Thermal properties of soils. In W. R. van Wijk (Ed.), Physics of plant environment (pp. 210–235). Amsterdam: North-Holland Publ. Co.Google Scholar
  124. 124.
    Bai, Y., Li, Q., Li, F., & Du, Y. (2009). Numerical simulation on gas production from a hydrate reservoir underlain by a free gas zone. Chinese Science Bulletin, 54, 865–872.Google Scholar
  125. 125.
    Du, Q., Li, Y., Li, S., Sun, J., & Jiang, Q. (2007). Mathematical model for natural gas hydrate production by heat injection. Petroleum Exploration and Development, 34(4), 470–487.Google Scholar
  126. 126.
    Ng, M. Y. A., Klar, A., & Soga, K. (2008). Coupled soil deformation-flow-thermal analysis of methane production in layered methane hydrate soils. 2008 Offshore Technology Conference, Houston, Texas, 5–8 May.Google Scholar
  127. 127.
    Tsypkin, G. G. (1993). Mathematical model of the dissociation of gas hydrates coexisting with ice in natural reservoirs. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 84-92, March–April.Google Scholar
  128. 128.
    Chen, Z., Bai, W., & Xu, W. (2005). Prediction of stability zones and occurrence zones of multiple composition natural gas hydrate in marine sediment. Chinese Journal of Geophysics, 48(4), 939–945.CrossRefGoogle Scholar
  129. 129.
    Williams, P. J. (1964). Specific heat and apparent specific heat of frozen soils. pp. 225–229. In 1st International Conference of Permafrost, 1964, National Academy of Sciences, Washington, DC.Google Scholar
  130. 130.
    Anderson, D. M., & Morgenstern, N.R. (1973). Physics, chemistry and mechanics of frozen ground: A review. In Proceeding of 2nd International Conference of Permafrost, Yakutsk, Siberia, 13-28 July 1973, National Academy of Sciences, Washington, DC, pp. 257–288.Google Scholar
  131. 131.
    Quintard, M., & Whitaker, S. (1995). Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments. International Journal of Heat and Mass Transfer, 38(15), 2779–2796.zbMATHCrossRefGoogle Scholar
  132. 132.
    Henninges, J., Schrötter, J., Erbas, K., & Huenges, E. (2002). Temperature field of the Mallik gas hydrate occurrence. Implications on phase changes and thermal properties, GEO Technologien 2002.Google Scholar
  133. 133.
    Perry, R. H., & Chilton, C. H. (1973). Chemical engineers handbook. New York, NY: McGraw Hill.Google Scholar
  134. 134.
    Waite, W. F., Stern, L. A., Kirby, S. H., Winters, W. J., & Mason, D. H. (2007). Simultaneous determination of thermal conductivity thermal diffusivity and specific heat in sl methane hydrate. Geophysical Journal International, 169, 767–774.CrossRefGoogle Scholar
  135. 135.
    Liu, Z., Sun, Y., & Yu, X. (2012). Theoretical basis for Modeling Porous Geomaterials under Frost Actions: A Review. Soil Science Society of America Journal, 76(2), 313–330.MathSciNetCrossRefGoogle Scholar
  136. 136.
    Johansen, O. (1975). Thermal conductivity of soils. Ph.D. dissertation. Norwegian University of Science and Technology, Trondheim (CRREL draft transl. 637, 1977).Google Scholar
  137. 137.
    Cote, J., & Konrad, J. M. (2005). A generalized thermal conductivity model for soils and construction materials. Canadian Geotechnical Journal, 42, 443–458.CrossRefGoogle Scholar
  138. 138.
    Lu, S., Ren, T., Gong, Y., & Horton, R. (2007). An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Science Society of America Journal, 71, 8–14.CrossRefGoogle Scholar
  139. 139.
    Gaddipati, M. (2008). Code comparison of methane hydrate reservoir simulators using CMG STARS, Master Thesis. West Virginia University, Morgantown, West Virginia.Google Scholar
  140. 140.
    Sean, W., Sato, T., Yamasaki, A., & Kiyono, F. (2007). CFD and experimental study on methane hydrate dissociation part No. dissociation under water flow. American Institute of Chemical Engineers, 53(1), 262–274.CrossRefGoogle Scholar
  141. 141.
    Kimoto, S., Oka, F., & Fushita, T. (2011). A chemo-thermo-mechanically coupled analysis of ground deformation induced by methane hydrate dissociation. Bifurcations, Instabilities and Degradations in Geomaterials, Springer Series in Geomechanics and Geoengineering, 0, 145–165.Google Scholar
  142. 142.
    Konno, Y., Oyama, H., Nagao, J., Masuda, Y., & Kurihara, M. (2010). Numerical analysis of the dissociation experimental of naturally occurring gas hydrate in sediment cores obtained at the Eastern Nankai Trough, Japan. Energy Fuels, 24(12), 6353–6358.CrossRefGoogle Scholar
  143. 143.
    Civan, F. C. (2001). Scale effect on porosity and permeability: Kinetics, model and correlation. AIChE Journal, 47(2), 271–287.CrossRefGoogle Scholar
  144. 144.
    Jeannin, L., Bayi, A., Renard, G., Bonnefoy, O., & Herri, J. M. (2002). Formation and dissociation of methane hydrates in sediments part II: numerical modeling. Proceeding of 4th International Conference on Gas Hydrates, Yokahama, Japan, May 19–23.Google Scholar
  145. 145.
    Sung, W., Huh, D., Ryu, B., & Lee, H. (2000). Development and application of gas hydrate reservoir simulator based on depressurizing mechanism. Korean Journal of Chemical Engineering, 17(3), 344–350.CrossRefGoogle Scholar
  146. 146.
    Van Genuchten, M. T. (1980). A close-form equation for predicting the hydraulic conductivity of unsaturated soil. Soil Science Society of America Journal, 44, 892–898.CrossRefGoogle Scholar
  147. 147.
    Parker, J. C., Lenhard, R. J., & Kuppusamy, T. (1987). A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23, 618–624.CrossRefGoogle Scholar
  148. 148.
    Bear, J. (1972). Dynamics of Fluids in Porous Media. Mineola, NY: Dover.zbMATHGoogle Scholar
  149. 149.
    Brooks, R. H., & Corey, A. T. (1964). Hydraulic properties of porous media. Hydrology Papers, No. 3, Colorado State University, Fort Collins.Google Scholar
  150. 150.
    Lake, L. W. (1989). Enhanced Oil Recovery. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  151. 151.
    Gamwo, I. K., & Liu, Y. (2010). Mathematical modeling and numerical simulation of methane production in a hydrate reservoir. Industrial & Engineering Chemistry Research, 49, 5231–5245.CrossRefGoogle Scholar
  152. 152.
    Verigin, N. N., No, L. K., & Khalikov, G. A. (1980). Linear problem of the dissociation of the hydrates of a gas in a porous medium. Fluid Dynamics, 15(1), 144–147.CrossRefGoogle Scholar
  153. 153.
    Willhite, P. G. (1986). Water flooding. Society of Petroleum Engineers Textbook Series (Vol. 3). Texas: Society of Petroleum Engineers.Google Scholar
  154. 154.
    Williams, P. J., & Smith, M. W. (1989). The frozen earth: Fundamentals of geocryology. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  155. 155.
    Fayer, M. J. (2000). UNSAT-H version 3.0: Unsaturated soil water and heat flow model, theory, user manual, and examples. Rep. 13249.Pac. Northwest Natl. Lab., Richland, WA.Google Scholar
  156. 156.
    Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31, 521–532.CrossRefGoogle Scholar
  157. 157.
    Vogel, T., van Genuchten, M. T., & Cislerova, M. (2001). Effect of the shape of the soil hydraulic functions near saturation on variably saturated flow predictions. Advances in Water Resources, 24, 133–144.CrossRefGoogle Scholar
  158. 158.
    Grant, S. A., & Salehzadeh, A. (1996). Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions. Water Resources Research, 32(2), 261–270.CrossRefGoogle Scholar
  159. 159.
    Hassanizadeh, S. M., & Gary, W. G. (1993). Thermodynamic basics of capillary pressure in porous media. Water Resources Research, 29, 3389–3405.CrossRefGoogle Scholar
  160. 160.
    Morrow, N. R. (1969). Physics and thermodynamics of capillary. In Symposium on Flow Through Porous Media. Washington, DC: The Carnegie Inst.Google Scholar
  161. 161.
    Burdine, N. T. (1953). Relative permeability calculations from pore-size distribution data. Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 198, 71–78.Google Scholar
  162. 162.
    Childs, E. C., & Collis-George, G. (1950). The permeability of porous materials. Proceedings of the Royal Society of London. Series A, 201, 392–405.CrossRefGoogle Scholar
  163. 163.
    Webb, S. W. (1998). Gas-phase diffusion in porous media-evaluation of an advective-dispersive formulation and the dusty-gas model for binary mixtures. Journal of Porous Media, 1(2), 187–199.zbMATHGoogle Scholar
  164. 164.
    Pruess, K., & Moridis, G. (1999). TOUGH2 User’s Guide, Version 2.0. LBNL-43134. Lawrence Berkley National Laboratory, University of California, Berkley, CA.Google Scholar
  165. 165.
    Yaws, C. L. (1995). Handbook of Transport Property Data: Viscosity, Thermal Conductivity, and Diffusion Coefficients of Liquids and Gases. Houston, TX: Gulf Publishing Company.Google Scholar
  166. 166.
    Haeckel, M., & Wallmann K., et al. (2010). Main equations for gas hydrate modeling. SUGAR Internal Communication.Google Scholar
  167. 167.
    Ahmadi, G., Ji, C., & Smith, D. H. (2004). Numerical solution for natural gas production from methane hydrate dissociation. Journal of Petroleum Science and Engineering, 41, 269–285.CrossRefGoogle Scholar
  168. 168.
    Peaceman, D.W. (1977). Fundamentals of numerical reservoir simulation. Amsterdam: Elsevier Scientific Pub. Co.Google Scholar
  169. 169.
    Weast, R. C. (1987). CRC handbook of chemistry and physics. Boca Raton: CRC Press, Inc.Google Scholar
  170. 170.
    Shpakov, V. P., Tse, J. S., Tulk, C. A., Kvamme, B., & Belosludov, V. R. (1998). Elastic moduli calculation and instability in structure I methane clathrate hydrate. Chemical Physics Letters, 282(2), 107–114.CrossRefGoogle Scholar
  171. 171.
    Tsimpanogiannis, I. N., & Lichtner, P. C. (2007). Parametric study of methane hydrate dissociation in oceanic sediments driven by thermal stimulation. Journal of Petroleum Science and Engineering, 56, 165–175.CrossRefGoogle Scholar
  172. 172.
    Sloan, E. D. (1998). Clathrate hydrates of natural gases (2nd ed.). New York, NY: Marcel Dekker.Google Scholar
  173. 173.
    Moridis, G. J. (2002). Numerical studies of gas production from methane hydrates. SPE Journal, 8(4), 1–11.Google Scholar
  174. 174.
    Bakker, R. (1998). Improvements in clathrate modeling II: The H2O-CO2-CH4-N2-C2H6 fluid system. In J. P. Henriet & J. Mienert (Eds.), Gas hydrates: Relevance to world margin stability and climate change (Vol. 137, pp. 75–105). London: Geological Society Special Publication.Google Scholar
  175. 175.
    Adisasmito, S., Frank, R. J., & Sloan, E. D. (1991). Hydrates of carbon dioxide and methane mixtures. Journal of Chemical & Engineering Data, 36, 68–71.CrossRefGoogle Scholar
  176. 176.
    Moridis, G. J. (2003). Nummerical Studies of Gas Production from Methane Hydrates. SPE Journal, 8(4), 359–370.CrossRefGoogle Scholar
  177. 177.
    Tishchenko, P., Hensen, C., Wallmann, K., & Wong, C. S. (2005). Calculation of the stability and solubility of methane hydrate in seawater. Chemical Geology, 219, 37–52.CrossRefGoogle Scholar
  178. 178.
    Holder, G. D., & John, V. T. (1985). Thermodynamics of multicomponent hydrate forming mixtures. Fluid Phase Equilibria, 14, 353–361.CrossRefGoogle Scholar
  179. 179.
    Kim, H. C., Bishnoi, P. R., Heidemann, R. A., & Rizvi, S. S. H. (1987). Kinetics of methane hydrate decomposition. Chemical Engineering Science, 42(7), 1645–1653.CrossRefGoogle Scholar
  180. 180.
    Peng, D., & Robinson, D. B. (1976). A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1), 59–64.CrossRefGoogle Scholar
  181. 181.
    Amyx, J. W., Bass, D. M., & Whiting, R. L. (1960). Petroleum reservoir engineering-physical properties. New York City: McGraw-Hill Book Co.Google Scholar
  182. 182.
    Englezos, P., Kalogerakis, N., Dholabhai, P. D., & Bishnoi, P. R. (1987). Kinetics of formation of methane and ethane gas hydrates. Chemical Engineering Science, 42, 2647–2658.CrossRefGoogle Scholar
  183. 183.
    Boswell, R., Kleinberg, R., Collett, T., & Frye M. (2007). Exploration priorities for methane gas hydrate resources. Fire in the Ice, 1194 Spring/Summer 2007. pp. 11-13. (USDOE National Energy Technology Laboratory, Hydrate Newsletter).Google Scholar
  184. 184.
    Yamamoto, K., Yasuda, M., & Osawa, O. (2005). Geomechanical condition of deep water unconsolidated and hydrate related sediments off the Pacific coast of central Japan. Proceeding of 5th International Conference on Gas Hydrate, Trondheim, Norway, Vol.3, 922 (Paper ref.3031), 13–16 June, 2005.Google Scholar
  185. 185.
    Brugada, J., Cheng, Y. P., Soga, K., & Santamarina, J. C. (2010). Discrete element modelling of geomechanical behaviour of methane hydrate soils with pore-filling hydrate distribution. Granular Matter, 12(5), 517–525.CrossRefGoogle Scholar
  186. 186.
    Soga, K., Lee, S. L., Ng, M. Y. A., & Klar, A. (2006). Characterization and engineering properties of methane hydrate soils. Proceedings of the Second International Workshop on Characterization and Engineering Properties of Natural Soils, Singapore, 29 November-1 December, Taylor & Francis, London.Google Scholar
  187. 187.
    Durham, W., Kirby, S., & Stern, L. (2003). The strength and rheology of methane hydrate. Journal of Geophysical Research, A, Space Physics, 108, 2182–2193.Google Scholar
  188. 188.
    Nixon, M. F., & Grozic, J. L. H. (2007). Submarine slope failure due to hydrate dissociation: A preliminary quantification. Canadian Geotechnical Journal, 44, 314–325.CrossRefGoogle Scholar
  189. 189.
    Xu, W., & Germanovich, L. N. (2006). Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach. Journal of Geophysical Research, 111, B01104.Google Scholar
  190. 190.
    Santamarina, J. C., & Ruppel, C. (2008). The impact of hydrate saturation on the mechanical ,electrical, and thermal properties of hydrate-bearing sand, silts, and clay. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008).Google Scholar
  191. 191.
    Ran, H., Silin, D. B., & Patzek, T. W. (2008). Micromechanics of hydrate dissociation in marine sediments by grain-scale simulations. 2008 SPE Western Regional and Pacific Section AAPG Joint Meeting, Bakersfield, CA, 31 March-2 April.Google Scholar
  192. 192.
    Masui, A., Miyazaki, K., Haneda, H., Ogata, Y., & Aoki, K. (2008). Mechanical characteristics of natural and artificial gas hydrate bearing sediments. Proceedings of the 6th International Conference on Gas Hydrates, ICGH.Google Scholar
  193. 193.
    Winters, W. J., Pecher, I. A., Waite, W. F., & Mason, D. H. (2004). Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. American Mineralogist, 89, 1221–1227.CrossRefGoogle Scholar
  194. 194.
    Hyodo, M., Nakata, Y., Yoshimoto, N., & Ebinuma, T. (2005). Basic research on the mechanical behavior of methane hydrate-sediments mixture. Soils & Foundations, 45(1), 75–85.Google Scholar
  195. 195.
    Masui, A., Haneda, H., Ogata, Y., & Aoki, K. (2005). The effect of saturation degree of methane hydrate on the shear strength of synthetic methane hydrate sediments. Proceedings of the 5th International Conference on Gas Hydrates (ICGH 2005), pp. 2657–2663.Google Scholar
  196. 196.
    Winters, W. J., Waite, W. F., Mason, D. H., Gilbert, L. Y., & Pecher, I. A. (2007). Methane gas hydrate effect on sediment acoustic and strength properties. Journal of Petroleum Science and Engineering, 56, 127–135.CrossRefGoogle Scholar
  197. 197.
    Hyodo, M., Nakata, Y., Yoshimoto, N., & Orense, R. (2007). Shear behavior of methane hydrate-bearing sand. Proceedings of the 17th International Offshore and Polar Engineering Conference, ISOPE, pp. 1326–1333.Google Scholar
  198. 198.
    Aziz, K., & Settari, A. (1979). Petroleum reservoir simulation. Imprint London: Applied Science Publishers.Google Scholar
  199. 199.
    Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics, 12(2), 155–164.zbMATHCrossRefGoogle Scholar
  200. 200.
    Wang, H. F. (2000). Theory of linear poroelasticity: With applications to geomechanics and hydrogeology. Princeton, NJ: Princeton University Press.Google Scholar
  201. 201.
    Bishop, A. W. (1959). The principle of effective stress.□Teknisk. Ukeblad, 106(39), 859–863.Google Scholar
  202. 202.
    Fredlund, D. G., & Morgenstern, N. R. (1977). Stress state variables for unsaturated soils. Journal of Geotechnical Engineering, ASCE, 103(5), 447–466.Google Scholar
  203. 203.
    Lu, N., & Likos, W. J. (2006). Suction stress characteristic curve for unsaturated soil. Journal of Geotechnical and Geoenvironmental Engineering, 132(2), 131–142.CrossRefGoogle Scholar
  204. 204.
    Coussy, O. (Ed.). (2004). Poromechanics. Chichester, England: John Wiley & Sons, ltd.zbMATHGoogle Scholar
  205. 205.
    Schrefler, B. A., & Gawin, D. (1996). The effective stress principle: incremental or finite form. International Journal for Numerical and Analytical Methods in Geomechanics, 20(11), 785–814.CrossRefGoogle Scholar
  206. 206.
    Chin, L. Y., Silpngarmlert, S., & Schoderbek, D. A. (2011). Subsidence prediction by coupled modeling of geomechanics and reservoir simulation for methane hydrate reservoirs. 45th U.S. Rock Mechanics/Geomechanics Symposium, June 26-29, 2011, San Francisco, CA.Google Scholar
  207. 207.
    Morland, L. W., Foulser, R., & Garg, S. K. (2004). Mixture theory for a fluid-saturated isotropic elastic matrix. International Journal of Geomechanics, 4(3), 207–215.CrossRefGoogle Scholar
  208. 208.
    Dominic, K., & Hilton, D. (1987). Gas production from depressurization of bench-scale methane hydrate reservoirs. US Department of Energy, DOE/METC-87/4073, pp. 1–9.Google Scholar
  209. 209.
    Kamath, V. A., Mutalik, P. N., Sira, J. H., & Patil, S. L. (1991). Experimental study of brine injection and depressurization methods for dissociation of gas hydrates. SPE Formation. Evaluation, 6(4), 477–484.Google Scholar
  210. 210.
    Li, S., Chen, Y., & Du, Q. (2005). Sensitivity analysis in numerical simulation of natural gas hydrate production. Geoscience, 19(1), 108–112.Google Scholar
  211. 211.
    Yang, X., Sun, C., Su, K., Yuan, Q., Li, Q., & Chen, G. (2012). A three-dimensional study on the formation and dissociation of methane in porous sediment by depressurization. Energy Conversion and Management, 56, 1–7.CrossRefGoogle Scholar
  212. 212.
    Bai, Y., & Li, Q. (2010). Simulation of gas production from hydrate reservoir by the combination of warm water flooding and depressurization. Science China, 53, 2469–2475.zbMATHCrossRefGoogle Scholar
  213. 213.
    Hovland, M., Judd, A. (Eds.). (1988). Seabed pockmarks and seepages. Impact on Geology, Biology and the Marine Environment, Graham and Trotman, London, 1988, pp. 293.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringMichigan Technological UniversityHoughtonUSA
  2. 2.Department of Civil EngineeringCase Western Reserve UniversityClevelandUSA

Personalised recommendations