Scaling the Aircrew Risk-Taking Behavior in Aviation Accidents: The Moderating Role of Phase of Flight

  • Muhammad Aftab AlamEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9736)


This study linked aircrew risk-taking behavior to aviation loss, and in this relationship it examined the moderating role of phase-of-flight. First, it developed a measurement model in view of prior accident causation theories and findings of 715 general aviation accidents in Pakistan over a period spanning 2000–2014. Later, it espoused this model for hypotheses testing using original data from 224 randomly chosen accidents and assessed the model through structural path analysis. Results indicated a positive relationship between aircrew risk-taking behavior and aviation loss, and significant moderating role of phase-of-flight.


Accident Risk-taking Aircrew Flight Injury Aviation-loss 


  1. 1.
    Rebok, G., Qiang, Y., Baker, S., McCarthy, M., Li, G.: Age, flight experience, and violation risk in mature commuter and air taxi pilots. Int. J. Aviat. Psychol. 15(4), 363–374 (2005)CrossRefGoogle Scholar
  2. 2.
    Shaoa, P., Changa, Y., Chenb, H.J.: Analysis of an aircraft accident model in taiwan. J. Air Transp. Manage. 27, 34–38 (2013). doi: 10.1016/j.jairtraman.2012.11.004 CrossRefGoogle Scholar
  3. 3.
    Ross, D.G.: Taking a chance: a formal model of how firms use risk in strategic interaction with other firms. Acad. Manage. Rev. 39(2), 202–226 (2014). doi: 10.5465/amr.2012.0107 CrossRefGoogle Scholar
  4. 4.
    Heinrich, H., Petersen, D., Roos, N.: Industrial Accident Prevention: A Safety Management Approach, 5th edn. McGraw Hill, New York (1980)Google Scholar
  5. 5.
    Bird, F.: Management Guide to Loss Control. Institute Press, Atlanta (1974)Google Scholar
  6. 6.
    Reason, J.: Human Error. Cambridge University Press, New York (1990)CrossRefGoogle Scholar
  7. 7.
    Abel, R.: Man is the Measure: A Cordial Invitation to the Central Problems in Philosophy. The Free Press, New York (1976)Google Scholar
  8. 8.
    Weick, K.: The Social Psychology of Organizing. Addison-Wesley, Reading (1979). Weick, K.E., Roberts, K.H.: Collective Mind in organizations: heedful interrelating on flight decks. Adm. Sci. Q. 38, 357–381 (1993)Google Scholar
  9. 9.
    Waterson, P., Clegg, C., Robinson, M.: Trade-offs between reliability, validity and utility in the development of human factors methods Human Factors In: Organizational Design And Management – XI, Nordic Ergonomics Society Annual Conference-46 (2014). doi: 10.4122/dtu:2406
  10. 10.
    Underwood, P., Waterson, P.: Systems thinking, the swiss cheese model and accident analysis: a comparative systemic analysis of the grayrigg train derailment using the ATSB, AcciMap and STAMP models. Accid. Anal. Prev. 68, 75–94 (2014)CrossRefGoogle Scholar
  11. 11.
    Shappell, S., Wiegmann, D.: The Human Factors Analysis and Classification System (HFACS). Federal Aviation Administration, Office of Aviation Medicine Report No. DOT/FAA/AM-00/7. Office of Aviation Medicine: Washington, DC (2000)Google Scholar
  12. 12.
    Shappell, S., Wiegmann, D.: Applying Reason: the Human Factors Analysis and Classification System (HFACS). Hum. Factors Aerosp. Saf. 1, 59–86 (2001)Google Scholar
  13. 13.
    Fajer, M., Almeida, I.M., Fischer, F.M.: Contributive factors to aviation accidents. Rev. Saude Publica 45(2), 432–435 (2011)CrossRefGoogle Scholar
  14. 14.
    FAA: Aviation Instructor’s Handbook. FAA-H-8083-9A. Skyhorse Publishing Inc., New York (2008)Google Scholar
  15. 15.
    Bourgeon, L., Valot, C., Navarro, C.: Communication and flexibility in aircrews facing unexpected and risky situations. Int. J. Aviat. Psychol. 23(4), 289–305 (2013)CrossRefGoogle Scholar
  16. 16.
    Wiegmann, D.A., Shappell, S.A.: Human error perspectives in aviation. Int. J. Aviat. Psychol. 11(4), 341–357 (2001b). doi: 10.1207/S15327108IJAP1104_2
  17. 17.
    Alam, M.A.: Cockpit learning in power distant cockpits: the interaction effect of Pilot’s interdependence and inclination to teamwork in airline industry. J. Air Transp. Manage. 42, 192–202 (2015)CrossRefGoogle Scholar
  18. 18.
    Orasanu, J., Martin, L., Davison, J.: Cognitive and Contextual Factors in Aviation Accidents: Decision Errors. In: Salas, E., Klein, G.A. (eds.) Linking Expertise and Naturalistic Decision Making, pp. 209–225. Erlbaum, Mahwah (2001)Google Scholar
  19. 19.
    David, R., Hunter, D.R.: Measurement of hazardous attitudes among pilots. Int. J. Aviat. Psychol. 15(1), 23–43 (2005). doi: 10.1207/s15327108ijap1501_2 CrossRefGoogle Scholar
  20. 20.
    Ye, F., Lord, D.: Comparing three commonly used crash severity models on sample size requirements: multinomial logit, ordered probit and mixed logit models. Analytic Methods Accid. Res. 1, 72–85 (2014)CrossRefGoogle Scholar
  21. 21.
    FAA: Pilot’s Handbook of Aeronautical Knowledge. Aeronautical Decision-Making: FAA-H-8083-25A. Skyhorse Publishing Inc., New York (2009)Google Scholar
  22. 22.
    Moller, M., Gregersen, P.: Psychosocial function of driving as predictor of risk-taking behavior. Accid. Anal. Prev. 40(1), 209–215 (2008)CrossRefGoogle Scholar
  23. 23.
    Tabachnick, B.G., Fidell, L.S.: Using Multivariate Statistics, 3rd edn. Harper Collins, New York (1996)Google Scholar
  24. 24.
    Hair, J.F., Black, W.C., Babin, B.J., Anderson, R.E., Tatham, R.L.: Multivariate Data Analysis, 6th edn. Prentice Hall, Upper Saddle River (2005)Google Scholar
  25. 25.
    Sekaran, U.: Research Methods for Business: A Skill Building Approach, 4th edn. Wiley India Pvt, Limited (2006)Google Scholar
  26. 26.
    Bedeian, A.G., Mossholder, K.W.: Simple question, not so simple answer: interpreting interaction terms in moderated multiple regression. J. Manage. 20, 159–165 (1994)Google Scholar
  27. 27.
    Siegel, S., Castellan, N.J.: Nonparametric Statistics for the Behavioural Sciences. McGraw-Hill, New York (1988)Google Scholar
  28. 28.
    FAA: Air Traffic Organization Policy. Order JO7110.65 V. U.S. Department of Transportation (2014)Google Scholar
  29. 29.
    Wiegmann, D.A., Shappell, S.A.: Human error analysis of commercial aviation accidents: application of the human factors analysis and classification system (HFACS). Aviat. Space Environ. Med. 72(11), 1006–1016 (2001a)Google Scholar
  30. 30.
    Hinkelbein, J., Spelten, O., Neuhaus, C., Hinkelbein, M., Özgür, E., Wetsch, W.: Injury severity and seating position in accidents with german EMS helicopters. Accid. Anal. Prev. 59, 283–288 (2013)CrossRefGoogle Scholar
  31. 31.
    Marsh, H.W., Hocevar, D.: Application of confirmatory factor analysis to the study of self- concept: first- and higher order factor models and their invariance across groups. Psychol. Bull. 97, 562–582 (1985)CrossRefGoogle Scholar
  32. 32.
    Byrne, B.M.: Structural Equation Modeling With EQS and EQS/Windows. Sage, Thousand Oaks (1994)Google Scholar
  33. 33.
    Hu, L., Bentler, P.M.: Fit indices in covariance structure modeling: sensitivity to underparameterized model misspecification. Psychol. Methods 3, 424–453 (1998)CrossRefGoogle Scholar
  34. 34.
    Kline, R.B.: Principles and Practice of Structural Equation Modeling, 3rd edn. Guilford Press, New York (2010)zbMATHGoogle Scholar
  35. 35.
    Huang, H., Abdel-Aty, M.: Multilevel data and Bayesian analysis in traffic safety. Accid. Anal. Prev. 42(6), 1556–1565 (2010). doi: 10.1016/j.aap.2010.03.013 CrossRefGoogle Scholar
  36. 36.
    Kenny, D.A., Kaniskan, B., McCoach, D.B.: The performance of RMSEA in models with small degrees of freedom. Sociol. Methods Res. 44, 486–507 (2015)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Aiken, L.S., West, S.G.: Multiple Regression: Testing and Interpreting Interactions. Sage, Thousand Oaks (1991)Google Scholar
  38. 38.
    Joseph, C., Reddy, S.: Risk perception and safety attitudes in Indian Army aviators. Int. J. Aviat. Psychol. 23(1), 49–62 (2013). doi: 10.1080/10508414.2013.746531 CrossRefGoogle Scholar
  39. 39.
    Dismukes, K., Young, G., Sumwalt, R.: Cockpit interruptions and distractions: effective management requires a careful balancing act. Airline Pilot 68(5), 18–21 (1999)Google Scholar
  40. 40.
    Thaden, T.L., Wiegmann, D.A., Shappell, S.A.: Organizational factors in commercial aviation accidents. Int. J. Aviat. Psychol. 16(3), 239–261 (2006). doi: 10.1207/s15327108ijap1603_1 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Iqra University IslamabadIslamabadPakistan

Personalised recommendations