Design Patterns for Human-Cognitive Agent Teaming

  • Axel SchulteEmail author
  • Diana Donath
  • Douglas S. Lange
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9736)


The aim of this article is to provide a common, easy to use nomenclature to describe highly automated human-machine systems in the realm of vehicle guidance and foster the identification of established design patterns for human-autonomy teaming. With this effort, we intend to facilitate the discussion and exchange of approaches to the integration of humans with cognitive agents amongst researchers and system designers. By use of this nomenclature, we identify most important top-level design patterns, such as delegation and associate systems, as well as hybrid structures of humans working with cognitive agents.


Assistant system Autonomous system Cognitive agent Cooperative control Delegation Design patterns Teaming Supervisory control Systems engineering Unmanned vehicles Vehicle guidance Work system 


  1. 1.
    Klein, G., Woods, D.D., Bradshaw, J.M., Hoffman, R.R., Feltovich, P.J.: Ten challenges for making automation a “team player” in joint human-agent activity. IEEE Intell. Syst. 6, 91–95 (2004)CrossRefGoogle Scholar
  2. 2.
    Bradshaw, J.M., Hoffman, R.R., Woods, D.D., Johnson, M.: The seven deadly myths of “Autonomous Systems”. IEEE Intell. Syst. 3, 54–61 (2013)CrossRefGoogle Scholar
  3. 3.
    Alexander, C.: The Timeless Way of Building. Oxford University Press, New York (1979)Google Scholar
  4. 4.
    Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Construction, Oxford University Press, New York (1977)Google Scholar
  5. 5.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)zbMATHGoogle Scholar
  6. 6.
    Fowler, M.: Analysis Patterns: Reusable Object Models. Addison-Wesley, Menlo Park (1996)Google Scholar
  7. 7.
    Pree, W.: Design Patterns for Object-Oriented Software Development. Addison-Wesley, Reading (1994)zbMATHGoogle Scholar
  8. 8.
    Brown, W., Malveau, R., McCormick, H., Mowbray, T.: Anti Patterns: Refactoring Software, Architectures, and Projects in Crisis. Wiley, New York (1998)Google Scholar
  9. 9.
    Coplien, J.O.: Pattern Languages of Program Design. Addison-Wesley Professional, Reading (1995)Google Scholar
  10. 10.
    Borchers, J.O.: A pattern approach to interaction design. AI Soc. 15(4), 359–376 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kruschitz, C., Hitz, M.: Human-computer interaction design patterns: structure, methods, and tools. Int. J. Adv. Softw. 3(1&2) (2010)Google Scholar
  12. 12.
    Kahn, P.H., et al.: Design patterns for sociality in human-robot interaction. In: 3rd ACM/IEEE International Conference on Human Robot Interaction (2008)Google Scholar
  13. 13.
    Sheridan, T.B.: Telerobotics, Automation, and Human Supervisory Control. MIT, Cambridge (1992)Google Scholar
  14. 14.
    Parasuraman, R., Sheridan, T.B., Wickens, C.D.: A model for types and levels of human interaction with automation. IEEE SMC Trans. 30(3), 286–297 (2000)Google Scholar
  15. 15.
    Miller, C.A., Parasuraman, R.: Beyond levels of automation: an architecture for more flexible human-automation collaboration. HFES 47(1), 182–186 (2003)Google Scholar
  16. 16.
    Clough, B.T.: Unmanned aerial vehicles: autonomous control challenges, a researcher’s perspective. In: Murphey, R., Pardalos, P.M. (eds.) Cooperative Control and Optimization, pp. 35–52. Springer, New York (2002)CrossRefGoogle Scholar
  17. 17.
    Huang, H.M.: Autonomy levels for unmanned systems (ALFUS) framework. Volume I: Terminology, version 2.0. NIST special publication, pp. 1–47 (2008)Google Scholar
  18. 18.
    Juziuk, J.: Design Patterns for Multi-agent Systems. Linnaeus University, Sweden (2012)Google Scholar
  19. 19.
    Scerbo, M.: Adaptive automation. Neuroergonomics, pp. 239–252. Oxford University Press, New York (2006)Google Scholar
  20. 20.
    Hollnagel, E., Woods, D.D.: Joint Cognitive Systems: Foundations of Cognitive Systems Engineering. CRC Press (2005)Google Scholar
  21. 21.
    Roth, E.M., Woods, D.D.: Cognitive task analysis: an approach to knowledge acquisition for intelligent system design. In: Topics in Expert System Design, pp. 233–264 (1989)Google Scholar
  22. 22.
    Schulte, A., Meitinger, C., Onken, R.: Human factors in the guidance of uninhabited vehicles: oxymoron or tautology? Cogn. Technol. Work 11(1), 71–86 (2009)CrossRefGoogle Scholar
  23. 23.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Englewood Cliffs (1995)zbMATHGoogle Scholar
  24. 24.
    Onken, R., Schulte, A.: System-Ergonomic Design of Cognitive Automation. Studies in Computational Intelligence, vol. 235. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Shively, R.J., Brandt, S.L., Lachter, J.: Application of Human Automation Teaming (HAT) patterns to Reduced Crew Operations (RCO). In: HCII Conference (2016)Google Scholar
  26. 26.
    Miller, C.A., Funk, H.B., Dorneich, M., Whitlow, S.D.: A playbook interface for mixed initiative control of multiple unmanned vehicle teams. In: IEEE DASC (2002)Google Scholar
  27. 27.
    Miller, C.A., Parasuraman, R.: Designing for flexible interaction between humans and automation: delegation interfaces for supervisory control. Hum. Factors 49(1), 57–75 (2007)CrossRefGoogle Scholar
  28. 28.
    Uhrmann, J., Schulte, A.: Concept, design and evaluation of cognitive task-based UAV guidance. Int. J. Adv. Intell. Syst. (2012)Google Scholar
  29. 29.
    Schulte, A., Meitinger, C.: Introducing cognitive and co-operative automation into UAV guidance work systems. In: Human-Robot Interaction in Future Military Operations. Ashgate. Series Human Factors in Defence, pp. 145–170 (2010)Google Scholar
  30. 30.
    Baxter, J.W., Horn, G.S., Leivers, D.P.: Fly-by-agent: controlling a pool of UAVs via a multi-agent system. Knowl. Based Syst. 21(3), 232–237 (2008)CrossRefGoogle Scholar
  31. 31.
    Bainbridge, L.: Ironies of automation. Automatica 19(6), 775–779 (1983)CrossRefGoogle Scholar
  32. 32.
    Onken, R., Walsdorf, A.: Assistant systems for aircraft guidance: cognitive man-machine cooperation. Aerosp. Sci. Technol. 5(8), 511–520 (2001)CrossRefzbMATHGoogle Scholar
  33. 33.
    Theißing, N., Schulte, A.: Designing a support system to mitigate pilot error while minimizing out-of-the-loop-effects. In: HCII Conference (2016)Google Scholar
  34. 34.
    Strenzke, R., Uhrmann, J., Benzler, A., Maiwald, F., Rauschert, A., Schulte, A.: Managing cockpit crew excess task load in military manned-unmanned teaming missions by dual-mode cognitive automation approaches. In: AIAA GNC Conference (2011)Google Scholar
  35. 35.
    Lange, D.S., Gutzwiller, R.S.: Human-autonomy teaming patterns in the command and control of teams of autonomous systems. In: HCII Conference (2016)Google Scholar
  36. 36.
    Van Breda, L., et al.: Supervisory control of multiple uninhabited systems: methodologies and enabling human-robot interface technologies. NATO RTO HFM-170 Report (2012)Google Scholar
  37. 37.
    Taylor, R.M., Howells, H., Watson, D.: The cognitive cockpit: operational requirement and technical challenge. contemporary ergonomics, pp. 55–59 (2000)Google Scholar
  38. 38.
    Miller, C.A., Hannen, M.D.: The Rotorcraft Pilot’s Associate: design and evaluation of an intelligent user interface for cockpit information management. Knowl. Based Syst. 12(8), 443–456 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Universität der Bundeswehr MünchenNeubibergGermany
  2. 2.Space and Naval Warfare Systems Center PacificSan DiegoUSA

Personalised recommendations