Lake Pavin pp 155-174 | Cite as

Geology, Geomorphology and Slope Instability of the Maar Lake Pavin (Auvergne, French Massif Central)

  • Jean-Claude Thouret
  • Pierre Boivin
  • Philippe Labazuy
  • Alberic Leclerc
Chapter

Abstract

Maars are craters created by violent phreatomagmatic eruptions. The crater shape involves roughly circular rims whose asymmetric slopes may be unstable long after the initial eruption. Lakes that occupy many maars are natural receptacles that enclose geologic archives such as slope deposits. Here we describe the geologic and geomorphic characteristics of the maar and Lake Pavin in Auvergne with emphasis on recent and current slope instability. This is due to its geometry (the 800 × 92 m lake occupies a wide depression cut deep in pre-existing lava flows and Montchal cone), loose surficial formations on steep subaerial slopes and fractured lava scarps, and loose and gas-rich sediment on sub-lacustrine steep slopes.

Our study of the outer rim slopes (<20°) of the maar shows that current geomorphic processes apparently act slowly, but mapping of the steepest (>31°), inner rim slopes suggests that instability is now related to runoff, solifluction and perhaps rockslides or deep-seated landslides. The slow and often small-sized mass movements occur on steep slopes >31° and fractured lava flow scarps while solifluction is favored by loose and thick, surficial maar deposits and a 4–5 month-long snow cover. Geomorphic anomalies on top of the north and NE maar rims suggest deep-seated, (slow moving?) rotational landslides that may record a long-lasting post-eruptive response to maar collapse. One of the large, recent rock fall scree on the NNE edge of the lake is apparently connected to the submerged platform capping a syn-eruptive collapse mass. The quasi-vertical edge of this platform may act as a source of debris transfer towards the deep lake bottom. Long subaerial slopes south and SE of the maar point out to the most unstable sector: fractured, thick lava flow scarps topple and produce scree, and permanent springs feed runoff and streams above the underlying clay-rich pyroclastic deposit. The south slope overhangs subaquatic lava cliffs which can transfer debris directly to the lake bottom 90 m below. In contrast, mapping of the recent fan of the lake outlet and the adjacent Gelat valley to the north, in which the outlet stream is incised, show no evidence for debris-flow deposits that were claimed to be emplaced by a historical catastrophic event triggered by a lake breakout.

Keywords

Lake Pavin Maar Slope Instability Lava Pyroclastic deposit Fan Hazard 

Notes

Acknowledgments

J.C. Thouret acknowledges all undergraduate students of the Department of Geology who have been mapping the maar surroundings under his supervision over the past 4 years. Thin sections and analysis of major elements have been carried out by C. Constantin, M. Benbakkar (LMV), and J. Marin (CRPG). Artwork has been achieved by L. Thouret. The content of this chapter has benefited from careful reviews and comments from our colleagues J.L. Bourdier, A. Gourgaud, E. Juvigné, D. Miallier, K. Nemeth, and C. Ollier.

References

  1. Albéric P, Jézéquel D, Bergonzini L, Chapron E, Viollier E, Massault M, Michard G (2013) Carbon cycling and organic radiocarbon reservoir effect in a meromictic crater lake (Lac Pavin, Puy de Dôme, France). Radiocarbon 55(2):1029–1042CrossRefGoogle Scholar
  2. Anzidei M, Carapezza ML, Esposito A, Giordano G, Lelli M, Tarchini L (2008) The Albano Maar Lake high resolution bathymetry and dissolved CO2 budget (Colli Albani volcano, Italy): constrains to hazard evaluation. J Volcanol Geotherm Res 171(3–4):258–268CrossRefGoogle Scholar
  3. Boivin P, Besson J-C, Briot D, Camus G, de Goër de Herve A, Gougaud A, Labazuy P, de Larouzière F-D, Livet M, Mergoil J, Miallier D, Morel J-M, Vernet G, Vincent P-M (2009) Volcanologie de la Chaîne des Puys, 4è édition bilingue, Editions du Parc Régional des Volcans d’Auvergne, Aydat, p 179Google Scholar
  4. Boivin P, Besson JC, Ferry P, Gourgaud A, Miallier D, Thouret J-C, Vernet G (2012) Le point sur l’éruption du Lac Pavin, il y a 7000 ans. Actes du colloque international « Lac Pavin et autres lacs méromictiques », Besse-St-Anastaise, 14–16 mai 2009. Revue des Sciences Naturelles d’Auvergne 74–75, 2010–2011, 45–55Google Scholar
  5. Bonhomme C, Poulin M, Vinçon-Leite B, Saad M, Groleau A, Jézéquel D, Tassin B (2011) Maintaining meromixis in Lake Pavin (Auvergne, France): the key role of a sublacustrine spring. Comptes Rendus Géosciences, Académie des Sciences 343(11):749–759CrossRefGoogle Scholar
  6. Boumehdi A (1988) Les clinopyroxènes dans les basaltes alcalins continentaux (Massif Central, France). Implications pétrogénétiques, barométriques et caractérisation de la profondeur des réservoirs magmatiques. Doctorat d’Université, Université Blaise Pascal - Clermont II, Clermont-Ferrand, 174 pGoogle Scholar
  7. Bourdier J-L (1980) Contribution à l’étude volcanologique de deux secteurs d’intérêt géothermique dans le Mont Dore: le groupe holocène du Pavin et le massif du Sancy. Thèse, Université de Clermont II, 180 pGoogle Scholar
  8. BRGM (2009) Evaluation préliminaire des conditions de stabilité des pentes du Lac Pavin. International Meeting “Lake Pavin and other meromictic lakes”, Besse-St-Anastaise, 14–16 mai 2009. Service Aménagement et Risques naturels, DDE Puy de Dôme (Abstract p. x and unpublished presentation by O. Renaud 26 slides)Google Scholar
  9. Brousse R (1961) Analyses chimiques des roches volcaniques du Tertiaire et Quaternaire de la France. Bulletin des Services de la carte géologique de la France et des topographies souterraines, 263, LVIII, 1–137Google Scholar
  10. Bruyant C (1909) Le niveau du Pavin. In: Mélanges, 3è partie, Annales de la station limnologique de Besse, 203–205Google Scholar
  11. Buettner R, Dellino P, La Volpe L, Lorenz V, Zimanowski B (2002) Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments. J Geophys Res 107(B11):14–14Google Scholar
  12. Büchel G (1993) Maars of the westeifel, Germany. In: Negendank, JFW, Zolitschka, B (eds) Paleolimnology of European maar lakes. Lecture notes in earth sciences, vol 49. Springer, pp 1–13Google Scholar
  13. Büchel G, Lorenz V (1993) Syn-and post-eruptive mechanism of the Alaskan Ukinrek maars in 1977. In: Zolitschka B, Negendank JFW (eds) Paleolimnology of European Maar Lakes. Springer-Verlag, Berlin, pp 15–60CrossRefGoogle Scholar
  14. Camus G, Goër de Herve A de, Kieffer G, Mergoil J Vincent P-M (1973) Mise au point sur le dynamisme et la chronologie des volcans holocènes de la région de Besse-en-Chandesse (Massif Central francais). Copmptes-Rendus Académie des Sciences, Paris, 277(7): 629–632Google Scholar
  15. Camus G, Michard G, Olive P, Boivin P, Desgranges P, Jézéquel D, Meybeck M, Peyrus J-C, Vincon JM, Viollier E, Kornprobst J (1993) Risques d’éruptions gazeuses carbonique en Auvergne. Bulletin Société géologique de France 164:767–781Google Scholar
  16. Cas RAF, Wright JV (1987) Volcanic successions. Modern and ancient. Allen & Unwyn, London, p 519CrossRefGoogle Scholar
  17. Chapron E, Albéric P, Jézéquel D, Versteeg W, Bourdier J-L, Sitbon J (2010a) Multidisciplinary characterization of sedimentary processes in a recent maar lake (Lake Pavin, French Massif Central) and implication for natural hazards. Nat Hazards Earth Syst Sci 10:1–13CrossRefGoogle Scholar
  18. Chapron E, Alberic P, Jezequel D, Ledoux G and Massault M (2010b) Les archives sédimentaires de l’histoire du lac Pavin. Revue des Sciences Naturelles d’Auvergne, 74–75 (numéro spécial: Le lac Pavin), pp 57–66Google Scholar
  19. Chapron E, Ledoux G, Simonneau A, Albéric P, St-Onge G, Lajeunesse P, Boivin P and Desmet M (2012) New evidence of Holocene mass wasting events in recent volcanic lakes from the French Massif Central (Lakes Pavin, Montcineyre and Chauvet) and implications for Natural Hazards. In: Yamada et al. (eds) Submarine mass movements and their consequences, Advances in Natural and Technological Hazards Research 31, pp 255–264Google Scholar
  20. Del Rosso-d’Hers T, Lavina P, Levi-Faict TW (2009) Risques naturels et péri-volcaniques du système volcanique Montchal-Pavin-Montcineyre. International meeting « Lake Pavin and other meromictic lakes », Besse en Chandesse, mai 2009, abstract p 72Google Scholar
  21. Fox BRS, Wartho J, Wilson GS, Lee DE, Nelson FE, Kaulfuss U (2015) Long-term evolution of an Oligocene/Miocene maar lake from Otago, New Zealand. Geochem Geophys Geosyst 16(1):59–76CrossRefGoogle Scholar
  22. Freundt A, Strauch W, Kutterolf S, Schmincke HU (2007) Volcanogenic tsunamis in lakes: examples from Nicaragua and general implications. Pure Appl Geophys 164(2–3):527–545CrossRefGoogle Scholar
  23. Gal F, Gadalia A (2011) Soil gas measurements around the most recent volcanic system of metropolitan France (Lake Pavin, Massif central). Comptes Rendus Géosciences, Académie des Sciences 343:43–54CrossRefGoogle Scholar
  24. Gewelt M, Juvigné E (1988) Téphrochronologie du Tardiglaciaire et de l’Holocène dans le Cantal, le Cézallier et les Monts Dore (Massif Central, France): résultats nouveaux et synthèse. Bulletin de l’Association française pour l’étude du Quaternaire 25:25–34CrossRefGoogle Scholar
  25. Glangeaud P (1916) Le cratère-lac Pavin et le volcan de Montchalm (Puy-de-Dôme). Comptes Rendus Académie des Sciences Paris 162:428–430Google Scholar
  26. Henriet JP (2009) Geophysical reconnaissance of Lac Pavin 2002. International meeting « Lake Pavin and other meromictic lakes », Besse en Chandesse, mai 2009, abstract p 29Google Scholar
  27. Jézéquel D, Sarazin G, Fonty G, Tassin B (2008) Le Lac Pavin: le volcan, l’eau et la vie. Pour La Science, dossier n°58 « L’eau Attention fragile ! », janvier-mars 2008, pp 52–59Google Scholar
  28. Jordan SC, Cas RAF, Hayman PC (2013) The origin of a large (>3 km) maar volcano by coalescence of multiple shallow craters: Lake Purrumbete maar, southeastern Australia. J Volcanol Geotherm Res 254:5–22CrossRefGoogle Scholar
  29. Juvigné E (1992a) Distribution of widespread late glacial and holocene tephra beds in the French Central Massif. Quat Int 14:181–185CrossRefGoogle Scholar
  30. Juvigné E (1992b) Approche de l’âge de deux cratères volcaniques lacustres d’Auvergne (France). Comptes Rendus Académie des Sciences, Paris 314:401–404Google Scholar
  31. Lavina P (1985) Le volcan du Sancy et le « Massif Adventif » (Massif des Monts Dore, Massif Central Français). Etudes Volcanologiques et structurales. Thèse 3e cycle, Université de Clermont-Ferrand, 197 pGoogle Scholar
  32. Lavina P and Del Rosso-d’Hers T (2008) Le complexe volcanique Montchal-Pavin-Montcineyre: nouvelles stratigraphie, teprochronologies et datations, vers une ré-évaluation de l’aléa volcano-tectonique en Auvergne. 22e Réunion des Sciences de la Terre, Nancy, FranceGoogle Scholar
  33. Lavina P and Del Rosso-d’Hers T (2009) Le système volcanique du groupe Montchal-Pavin: nouvelle stratigraphie des formations volcano-sédimentaires et nouvelles datations, volcanologie dynamique, conséquences pour une évaluation des risques naturels. International meeting « Lake Pavin and other meromictic lakes », Besse en Chandesse, mai 2009, abstract p 15Google Scholar
  34. Lavrieux M, Disnard J-R, Chapron E, Bréheret J-G, Jacob J, Miras Y, Reyss J-L, Andrieu-Pone V, Arnaud F (2013) 6700 yr sedimentary record of climatic and anthropogenic signals in Lake Aydat (French Massif Central). The Holocene 23(9):1317–1328CrossRefGoogle Scholar
  35. Lockwood JP, Costa JE, Tuttle ML, Nni J, Tebor SG (1988) The Potential For Catastrophic Dam Failure At Lake Nyos Maar, Cameroon. Bull Volcanol 50(5):340–349CrossRefGoogle Scholar
  36. Lorenz V (1973) On the formation of Maars. Bull Volcanol 37(2):183–204CrossRefGoogle Scholar
  37. Lorenz V (1986) On the growth of maars and diatremes and its relevance to the formation of tuff rings. Bull Volcanol 48:265–274CrossRefGoogle Scholar
  38. Lorenz V (1987) Phreatomagmatism and its relevance. Chem Geol 62(1–2):149–156CrossRefGoogle Scholar
  39. Lorenz V (2007) Syn- and posteruptive hazards of maar–diatreme volcanoes. J Volcanol Geotherm Res 159:285–312CrossRefGoogle Scholar
  40. Macaire J-J, Fourmont A, Argant J et al (2010) Quantitative analysis of climate versus human impact on sediment yield since the Lateglacial: the Sarliève palaeolake catchment (France). The Holocene 20(4):497–516CrossRefGoogle Scholar
  41. Németh K (2001) Long-term erosion-rate calculation from the Waipiata Volcanic Field (New Zealand) based on erosion remnants of scoria cones, tuff rings and maars. Géomorphologie: relief, processus, environnement 2:137–152CrossRefGoogle Scholar
  42. Németh K, Cronin SJ (2007) Syn- and post-eruptive erosion, gully formation, and morphological evolution of a tephra ring in a tropical climate erupted in 1913 in West Ambrym, Vanuatu. Geomorphology 86(1–2):115–130CrossRefGoogle Scholar
  43. Németh K, Kereszturi G (2015) Monogenetic volcanism: personal views and discussion. Int J Earth Sci 104(8):2131–2146CrossRefGoogle Scholar
  44. Németh K, Goth K, Martin U, Csillag G, Suhr P (2008) Reconstructing paleoenvironment, eruption mechanism and paleomorphology of the Pliocene Pula maar, (Hungary). J Volcanol Geotherm Res 177(2):441–456CrossRefGoogle Scholar
  45. Németh K, Cronin SJ, Smith IEM, Flores JA (2012) Amplified hazard of small-volume monogenetic eruptions due to environmental controls, Orakei Basin, Auckland Volcanic Field, New Zealand. Bull Volcanol 74(9):2121–2137CrossRefGoogle Scholar
  46. Olive P, Boulègue J (2004) Étude biogéochimique d’un lac méromictique: le lac Pavin, France. Géomorphologie: processus, relief, environnement 10(4):305–316CrossRefGoogle Scholar
  47. Ollier CD (1967) Maars. Their characteristics, varieties and definition. Bull Volcanol 31:45–73CrossRefGoogle Scholar
  48. Pirrung M, Büchel G, Lorenz V, Treutler H-C (2007) Post-eruptive development of the Ukinrek East Maar since its eruption in 1977 A.D. in the periglacial area of south-west Alaska. Sedimentology 55(2):305–334CrossRefGoogle Scholar
  49. Pirrung M, Buechel G, Merten D, Assing H, Schulte-Vieting U, Heublein S, Theune-Hobbs M, Boehrer B (2008) Morphometry, limnology, hydrology and sedimentology of maar lakes in East Java, Indonesia. Studia Quaternaria 21:139–152Google Scholar
  50. Provencher L and Dubois J-M (2008) Proposition d’une nomenclature géomorphologique du ravage lacustre et comparaison avec les rivages côtiers et fluviaux. La société Provancher d’Histoire Naturelle du Canada, Université de Sherbrooke, pp 90–96Google Scholar
  51. Rouwet D, Christenson B, Tassi F, Vandemeulebrouck J (eds) (2015) Volcanic lakes. advances in volcanology (Springer) ISBN 978-3-642-36832-5, 1–20Google Scholar
  52. Schettler G, Schwab MJ, Stebich M (2007) A 700-year record of climate change based on geochemical and palynological data from varved sediments (Lac Pavin, France). Chem Geol 240:11–35CrossRefGoogle Scholar
  53. Schwab MJ, Schettler G, Bruchmann C, Acksel D, Negendank JFW, Brauer A (2009) Stratigraphy, chronology and paleoenvironment information of the sediment record from Lac Pavin, Massif Central (France). International Meeting-Lake Pavin and Other Meromictic Lakes, May 14–16, Besse et St-Anastaise, France, Abstract, p 30Google Scholar
  54. Seib N, Kley J, Büchel G (2013) Identification of maars and similar volcanic landforms in the West Eifel Volcanic Field through image processing of DTM data: efficiency of different methods depending on preservation state. Int J Earth Sci 102(3):875–901CrossRefGoogle Scholar
  55. Stebich M, Brüchmann C, Kulbe T et al (2005) Vegetation history, human impact and climate change during the last 700 years recorded in annually laminated sediments of Lac Pavin, France. Rev Palaeobot Palynol 133:115–133CrossRefGoogle Scholar
  56. Suhr P, Goth K, Lorenz V, Suhr S (2006) Long lasting subsidence and deformation in and above maar-diatreme volcanoes – a never ending story. Z Dtsch Ges Geowiss 157(3):491–511Google Scholar
  57. Tassi F, Rouwet D (2014) An overview of the structure, hazards, and methods of investigation of Nyos-type lakes from the geochemical perspective. J Limnol 73(1):55–70CrossRefGoogle Scholar
  58. Thouret J-C, Boivin P, Labazuy P, Leclerc A (2016) Geology, geomorphology and slope instability of the maar Lake Pavin (Auvergne, French Massif central). In: Lake Pavin. Springer, ChamGoogle Scholar
  59. Touchart L (2000) Les lacs: origine et morphologie. L’Harmattan, Paris, 202 pGoogle Scholar
  60. Vernet G (2013) La séquence sédimentaire des Gravanches/Gerzat: enregistrement d’événements catastrophiques à valeur chronologique en Limagne d’Auvergne (Massif Central, France). Quaternaire 24(2):109.127Google Scholar
  61. Vespermann D, Schmincke HU (2000) Scoria cones and tuff rings. In: Sigurdsson et al (eds) Encyclopedia of volcanoes. Academic Press, pp 683–694Google Scholar
  62. White J, Ross P-S (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29CrossRefGoogle Scholar
  63. Wohletz K (1986) Explosive magma- water interactions: thermodynamics, explosions mechanisms, and field studies. Bull Volcanol 48:245–264Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jean-Claude Thouret
    • 1
  • Pierre Boivin
    • 1
  • Philippe Labazuy
    • 1
  • Alberic Leclerc
    • 2
  1. 1.LMV, Université Clermont-Auvergne - CNRS - IRD - OPGCAubièreFrance
  2. 2.Ecole Supérieure des Géomètres et TopographesLe MansFrance

Personalised recommendations