Lake Pavin pp 205-220 | Cite as

The Iron Wheel in Lac Pavin: Interaction with Phosphorus Cycle

  • Vincent BusignyEmail author
  • Didier Jézéquel
  • Julie Cosmidis
  • Eric Viollier
  • Karim Benzerara
  • Noah J. Planavsky
  • Patrick Albéric
  • Oanez Lebeau
  • Gérard Sarazin
  • Gil Michard


Lac Pavin is a crater lake, characterized by water column stratification, with oxygenated shallow waters lying above anoxic and ferruginous deep waters. In the deep waters, ferrous iron, Fe(II)aq, is the main dissolved cation, with concentrations up to 1 mM. Iron is efficiently confined below the oxic-anoxic boundary due to the formation of insoluble ferric iron species, Fe(III)s, by oxidation with O2 and other oxidants (e.g., NO3, Mn(IV)). The Fe(III)s particles settle down and are reduced in the anoxic waters and at the lake bottom by reaction with organic matter to soluble Fe(II)aq. It then diffuses upward in the water column and finally is re-oxidized to Fe(III) at the redox boundary. This process, known as the “iron wheel”, is described in the present paper that reviews available data for dissolved and particulate matter in the water column, settling particles collected by sediment traps and sediment cores. Detailed analyses for some major and trace element concentrations, along with iron speciation and isotope composition, high-resolution microscopy, and geochemical modeling provide a picture of biogeochemical cycling in this Fe-rich aqueous system. At Lac Pavin the P and Fe cycles are tightly coupled. Orthophosphate is sorbed onto Fe oxyhydroxides and/or precipitated as Fe(II)-Fe(III)-phosphates at the redox interface, confining P ions in the deep anoxic waters. Deeper in the water column, particulate Fe concentrations progressively increase due to Fe(II) phosphate (vivianite) formation. In the sediment, Fe is buried as various ferrous minerals, such as vivianite, pyrite and siderite.


Anoxic Ferruginous Lake Pavin Meromictic Iron Phosphate Sulfide Manganese Biogeochemical cycle 


  1. Aeschbach-Hertig W, Hofer M, Schmid M, Kipfer R, Imboden DI (2002) The physical structure and dynamics of a deep, meromictic crater lake (Lac Pavin, France). Hydrobiologia 487:111–136CrossRefGoogle Scholar
  2. Albéric P, Viollier E, Jezequel D, Grosbois C, Michard G (2000) Interactions between trace elements and dissolved organic matter in the stagnant anoxic deep layer of a meromictic lake. Limnol Oceanogr 45:1088–1096CrossRefGoogle Scholar
  3. Albéric P, Jézéquel D, Bergonzini L, Chapron E, Viollier E, Massault M, Michard G (2013) Carbon cycling and organic radiocarbon reservoir effect in a meromictic crater lake (Lac Pavin, Puy-de-Dôme, France). Radiocarbon 55:1029–1042CrossRefGoogle Scholar
  4. Al-Borno A, Tomson MB (1994) The temperature dependence of the solubility product constant of vivianite. Geochim Cosmochim Acta 58:5373–5378CrossRefGoogle Scholar
  5. Amblard C (1984) Variations nycthémérales des concentrations en nucléotides adényliques d’un phytoplancton lacustre (Le Pavin, France). Verh Internat Verein Limnol 22:1011–1018Google Scholar
  6. Amblard C (1986) A study of spatial and temporal variability in the adenine nucleotides of lake phytoplankton during a diel cycle (Lac Pavin - France). Hydrobiologia 137:159–173CrossRefGoogle Scholar
  7. Amblard C (1988) Seasonal succession and strategies of phytoplankton development in two lakes of different trophic states. J Plankton Res 10(6):1189–1208CrossRefGoogle Scholar
  8. Amblard C, Bourdier G (1990) The spring bloom of the diatom Melosira italica subsp. subarctica in Lake Pavin: biochemical, energetic and metabolic aspects during sedimentation. J Plankton Res 12:645–651CrossRefGoogle Scholar
  9. Anbar AD, Jarzecki AA, Spiro TG (2005) Theoretical investigation of iron isotope fractionation between Fe(H2O)6 3+ and Fe(H2O)6 2+: implications for iron stable isotope geochemistry. Geochim Cosmochim Acta 69:825–837CrossRefGoogle Scholar
  10. Assayag N, Jézéquel D, Ader M, Viollier E, Michard G, Prévot F, Agrinier P (2008) Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): constraints from δ18O of water and δ13C of dissolved inotganic carbon. Appl Geochem 23:2800–2816CrossRefGoogle Scholar
  11. Balci N, Bullen TD, Witte-Lien K, Shanks WC, Motelica M, Mandernack KW (2006) Iron isotope fractionation during microbially stimulated Fe(II) oxidation and Fe(III) precipitation. Geochim Cosmochim Acta 70:622–639CrossRefGoogle Scholar
  12. Beard BL, Johnson CM (1999) High precision iron isotope measurements of terrestrial and lunar materials. Geochim Cosmochim Acta 63:1653–1660CrossRefGoogle Scholar
  13. Bénézeth P, Dandurand JL, Harrichoury JC (2009) Solubility product of siderite (FeCO3) as a function of temperature (25–250°C). Chem Geol 265:3–12CrossRefGoogle Scholar
  14. Biderre-Petit C, Jézéquel D, Dugat-Bony E, Lopes F, Kuever J, Borrel G, Viollier E, Fonty G, Peyret P (2011) Identification of microbial communities involved in the methane cycle of a freshwater meromictic lake. FEMS Microbiol Ecol 77:533–545CrossRefPubMedGoogle Scholar
  15. Bonhomme C, Poulin M, Vinçon-Leite B, Saad M, Groleau A, Jézéquel D, Tassin B (2011) Maintaining meromixis in Lake Pavin (Auvergne, France): the key role of a sublacustrine spring. C R Geosci 343:749–759CrossRefGoogle Scholar
  16. Bullen TD, White AF, Childs CW, Vivit DV, Schulz MS (2001) Demonstration of significant abiotic iron isotope fractionation in nature. Geology 29:699–702CrossRefGoogle Scholar
  17. Bura-Nakic E, Viollier E, Jézéquel D, Thiam A, Ciglenecki I (2009) Reduced sulfur and iron species in anoxic water column of meromictic crater Lake Pavin (Massif Central, France). Chem Geol 266:320–326CrossRefGoogle Scholar
  18. Busigny V, Planavsky NJ, Jézéquel D, Crowe S, Louvat P, Moureau J, Viollier E, Lyons TW (2014) Iron isotopes in an Archean ocean analogue. Geochim Cosmochim Acta 133:443–462CrossRefGoogle Scholar
  19. Butler IB, Archer C, Vance D, Oldroyd A, Rickard D (2005) Fe isotope fractionation on FeS formation in ambient aqueous solution. Earth Planet Sci Lett 236:430–442CrossRefGoogle Scholar
  20. Campbell P, Torgersen T (1980) Maintenance of iron meromixis by iron redeposition in a rapidly flushed monimolimnion. Can J Fish Aquat Sci 37:1303–1313CrossRefGoogle Scholar
  21. Chapron E, Albéric P, Jézéquel D, Versteeg W, Bourdier JL, Sitbon J (2010) Multidisciplinary characterisation of sedimentary processes in a recent maar lake (Lake Pavin, French Massif Central) and implication for natural hazards. Nat Hazards Earth Syst Sci 10:1815–1827CrossRefGoogle Scholar
  22. Cosmidis J, Benzerara K, Morin G, Busigny V, Lebeau O, Jézéquel D, Noël V, Dublet G, Othmane G (2014) Biomineralization of mixed valence iron-phosphates in the anoxic water column of Lake Pavin (Massif Central, France). Geochim Cosmochim Acta 126:78–96CrossRefGoogle Scholar
  23. Croal LR, Johnson CM, Beard BL, Newman DK (2004) Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic barteria. Geochim Cosmochim Acta 68:1227–1242CrossRefGoogle Scholar
  24. Crosby HA, Johnson CM, Roden EE, Beard BL (2005) Coupled Fe(II)-Fe(III) electron and atom exchange as a mechanism for Fe isotope fractionation during dissimilatory iron oxide reduction. Environ Sci Technol 39:6698–6704CrossRefPubMedGoogle Scholar
  25. Crowe SA, Jones CA, Katsev S, Magen C, O’Neill AH, Sturm A, Canfield DE, Haffner GD, Mucci A, Sundby B, Fowled DA (2008) Photoferrotrophs thrive in an Archean ocean analogue. Proc Natl Acad Sci 105:15938–15943CrossRefPubMedPubMedCentralGoogle Scholar
  26. Davison W (1993) Iron and manganese in lakes. Earth Sci Rev 34:119–163CrossRefGoogle Scholar
  27. Devaux J (1980) Contribution à l’étude limnologique du Lac Pavin (France): Facteurs abiotiques et phytoplancton. Hydrobiologia 68:167–189CrossRefGoogle Scholar
  28. Hongve D (1997) Cycling of iron, manganese, and phosphate in a meromictic lake.Google Scholar
  29. Jézéquel D, Sarazin G, Prévot F, Viollier E, Groleau A, Agrinier P, Albéric P, Binet S, Bergonzini L, Michard G (2011) Bilan hydrique du lac Pavin – water balance of the Lake Pavin. Rev Sci Nat d’Auvergne 74:75–96Google Scholar
  30. Johnson CM, Skulan JL, Beard BL, Sun H, Nealson KH, Braterman PS (2002) Isotopic fractionation between Fe(III) and Fe(II) in aqueous solutions. Earth Planet Sci Lett 195:141–153CrossRefGoogle Scholar
  31. Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient earth. Annu Rev Earth Planet Sci 36:457–493CrossRefGoogle Scholar
  32. Konhauser KO, Hamade T, Raiswell R, Morris RC, Ferris FG, Southam G, Canfield DE (2002) Could bacteria have formed the Precambrian banded iron formations? Geology 30:1079–1082CrossRefGoogle Scholar
  33. Konhauser KO, Lalonde SV, Amskold L, Holland HD (2007) Was there really an Archean phosphate crisis? Science 315:1234CrossRefPubMedGoogle Scholar
  34. Konhauser KO, Kappler A, Roden EE (2011) Iron in microbial metabolisms. Elements 7:89–93CrossRefGoogle Scholar
  35. Lehours AC, Bardot C, Thenot A, Debroas D, Fonty G (2005) Anaerobic microbial communities in Lake Pavin, a unique meromictic lake in France. Appl Environ Microbiol 71:7389–7400CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lehours AC, Evans P, Bardot C, Joblin K, Fonty G (2007) Phylogenetic diversity of Archea and bacteria in the anoxic zone of a meromictic lake (Lake Pavin, France). Appl Environ Microbiol 73:2016–2019CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lehours AC, Batisson I, Guedon A, Mailhot G, Fonty G (2009) Diversity of culturable bacteria, from the anaerobic zone of the meromictic Lake Pavin, able to perform dissimilatory-iron reduction in different in vitro conditions. Geomicrobiol J 26:212–223CrossRefGoogle Scholar
  38. Li Q, Wang X, Kan D, Bartlett R, Pinay G, Ding Y, Ma W (2012) Enrichment of phosphate on ferrous iron phases during bio-reduction of ferrihydrite. Int J Geosci 3:314–320CrossRefGoogle Scholar
  39. Lopes F, Viollier E, Thiam A, Michard G, Abril G, Groleau A, Prévot F, Carrias JF, Jézéquel D (2011) Biogeochemical modeling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl Geochem 26:1919–1932CrossRefGoogle Scholar
  40. Martin JM (1985) The Pavin Crater lake. In: Stumm W (ed) Chemical processes in lakes, Reviews in mineralogy and geochemistry. Wiley, New York, pp 169–188Google Scholar
  41. Meybeck M, Martin JM, Olive P (1975) Géochimie des eaux et des sédiments de quelques lacs volcaniques du Massif Central français. Verh Internat Verein Limnol 19:1150–1164Google Scholar
  42. Michard G, Viollier E, Jézéquel D, Sarazin G (1994) Geochemical study of a crater lake: Lac Pavin, France – Identification, location and quantification of the chemical reactions in the lake. Chem Geol 115:103–115CrossRefGoogle Scholar
  43. Michard G, Jézéquel D, Viollier E (2003) Vitesses des réactions de dissolution et précipitation au voisinage de l’interface oxydo-réducteur dans un lac méromictique : Le lac Pavin (Puy-de-Dôme, France). Revue des Sciences de l’Eau 16:199–218CrossRefGoogle Scholar
  44. Miot J, Jézéquel D, Benzerara K, Cordier L, Rivas-Lamelo S, Skouri-Panet F, Férard C, Poinsot M, Duprat E. (2016) Mineral diversity in Lake Pavin: connections with water column chemistry and biomineralization processes. Minerals 6, in press. doi :10.3390/Google Scholar
  45. Poulton SW, Canfield DE (2011) Ferruginous conditions: a dominant feature of the ocean through earth’s history. Elements 7:107–112CrossRefGoogle Scholar
  46. Reichert P (1998) AQUASIM 2.0 – computer program for the identification and simulation of aquatic systems. Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dubendorf, pp 219Google Scholar
  47. Restituito F (1984) Contribution à l’étude du sédiment d’un lac oligomésotrophe d’origine volcanique (Lac Pavin, France). Hydrobiologia 109:229–234CrossRefGoogle Scholar
  48. Restituito F (1987) Consequences of redox conditions on the distribution of cations in a meromictic oligotrophic lake. Hydrobiologia 144:63–76CrossRefGoogle Scholar
  49. Rickard D, Luther GW (2007) Chemistry of iron sulfides. Chem Rev 107:514–562CrossRefPubMedGoogle Scholar
  50. Schettler G, Schwab MJ, Stebich M (2007) A 700 years record of climate change based on geochemical and palynological data from varved sediments (Lac Pavin, France). Chem Geol 240:11–35CrossRefGoogle Scholar
  51. Severmann S, Johnson CM, Beard BL, McManus J (2006) The effect of early diagenesis on the Fe isotope compositions of porewaters and authigenic minerals in continental margin sediments. Geochim Cosmochim Acta 70:2006–2022CrossRefGoogle Scholar
  52. Skulan JL, Beard BL, Johnson CM (2002) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(III) and hematite. Geochim Cosmochim Acta 66:2995–3015CrossRefGoogle Scholar
  53. Staubwasser M, Schoenberg R, von Blanckenburg F, Krüger S, Pohl C (2013) Isotope fractionation between dissolved and suspended particulate Fe in the oxic and anoxic water column of the Baltic Sea. Biogeosciences 10:233–245CrossRefGoogle Scholar
  54. Stebich M, Brüchmann C, Kulbe T, Negendank JFW (2005) Vegetation history, human impact and climate change during the last 700 years recorded in annually laminated sediments of Lac Pavin. France Rev Palaeobot Palynol 133:115–133CrossRefGoogle Scholar
  55. Strelow FWE (1980) Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid. Talanta 27:727–732CrossRefPubMedGoogle Scholar
  56. Taylor PDP, Maeck R, De Bievre P (1992) Determination of the absolute isotopic composition and atomic weight of a reference sample of natural iron. Int J Mass Spectrom 121:111–125CrossRefGoogle Scholar
  57. Viollier E, Jézéquel D, Michard G, Pèpe M, Sarazin G, Albéric P (1995) Geochemical study of a crater lake (Pavin Lake, France): trace-element behaviour in the monimolimnion. Chem Geol 125:61–72CrossRefGoogle Scholar
  58. Viollier E, Michard G, Jézéquel D, Pèpe M, Sarazin G (1997) Geochemical study of a crater lake: Lake Pavin, Puy de Dôme France. Constraints afforded by the particulate matter distribution in the element cycling within the lake. Chem Geol 142:225–241CrossRefGoogle Scholar
  59. Viollier E, Inglett PW, Hunter K, Roychoudhury AN, Van Cappellen P (2000) The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem 15:785–790CrossRefGoogle Scholar
  60. Voegelin A, Senn AC, Kaegi R, Hug SJ, Mangold S (2013) Dynamic Fe-precipitate formation induced by Fe(II) oxidation in aerated phosphate-containing water. Geochim Cosmochim Acta 117:216–231CrossRefGoogle Scholar
  61. Welch SA, Beard BL, Johnson CM, Braterman PS (2003) Kinetic and equilibrium Fe isotope fractionation between aqueous Fe(II) and Fe(III). Geochim Cosmochim Acta 67:4231–4250CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Vincent Busigny
    • 1
    Email author
  • Didier Jézéquel
    • 1
  • Julie Cosmidis
    • 2
  • Eric Viollier
    • 1
  • Karim Benzerara
    • 3
  • Noah J. Planavsky
    • 4
  • Patrick Albéric
    • 5
  • Oanez Lebeau
    • 6
  • Gérard Sarazin
    • 1
  • Gil Michard
    • 1
  1. 1.IPGP (Institut de Physique du Globe de Paris)Sorbonne Paris Cité, Univ. Paris Diderot, UMR 7154 CNRSParisFrance
  2. 2.Department of Geological SciencesUniversity of ColoradoBoulderUSA
  3. 3.Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC)Sorbonne Universités, UPMC Université Paris, 6, CNRS UMR 7590, MNHN, IRD UMR 206ParisFrance
  4. 4.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  5. 5.ISTO (Institut des Sciences de la Terre d’Orléans), Observatoire des Sciences de l’Univers en région CentreUMR 7327 (CNRS-Université d’Orléans-BRGM)Orléans Cedex 2France
  6. 6.Institut de Physique du Globe de ParisSorbonne Paris Cité, Université Paris Diderot, UMR 7154 CNRSParisFrance

Personalised recommendations