An SSVEP and Eye Tracking Hybrid BNCI: Potential Beyond Communication and Control

  • Paul McCullaghEmail author
  • Chris Brennan
  • Gaye Lightbody
  • Leo Galway
  • Eileen Thompson
  • Suzanne Martin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9743)


Brain-Neural Machine/Computer Interface (BNCI) has been used successfully as an assistive technology to restore communication, improve control and thus potentially enhance social inclusion. Recently BNCI technology and interfaces have evolved to become more usable, thereby allowing the recording of brain activity to become part of the wider self-quantification movement. A hybrid BNCI can provide a viable but alternative interface for Human Computer Interaction, which combines the inputs from BNCI and eye tracking. This hybrid approach has maintained information transfer rate but increased robustness and overall usability. The combination of two complementary technologies provides the possibility for investigating new ways of human enhancement and has the potential to open up new medical applications.


Applications BCI Eye-tracking Medical SSVEP 


  1. 1.
    Allison, B.Z., Dunne, S., Leeb, R., Millan, J., Nijholt, A.: Recent and upcoming BCI progress: overview, analysis, and recommendations. In: Allison, B.Z., Dunne, S., Leeb, R., Millan, J., Nijholt, A. (eds.) Towards Practical BCIs: Bridging the Gap from Research to Real-World Applications, pp. 1–13. Springer, Berlin (2013)Google Scholar
  2. 2.
    Millán, J.D., Rupp, R., Müller-Putz, G.R., et al.: Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges. Front. Neurosci. 7, 4 (2010)Google Scholar
  3. 3.
    Shih, J.J., Krusienski, D.J., Wolpaw, J.R.: Brain-computer interfaces in medicine. Mayo Clin. Proc. 87(3), 268–279 (2012). doi: 10.1016/j.mayocp.2011.12.008, Abdulkader, S.N., Atia, A., Mostafa, M.M.: Brain computer interfacing? applications and challenges. Egypt. Inf. J. 16(2), 213–230 (2015). doi: 10.1016/j.eij.2015.06.002
  4. 4.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2001). doi: 10.1016/S1388-2457(02)00057-3 CrossRefGoogle Scholar
  5. 5.
    Swan, M.: The quantified self: fundamental disruption in big data science and biological discovery. Big Data 1(2), 85–99 (2013). doi: 10.1089/big.2012.0002. Mary Ann Liebert, Inc.CrossRefGoogle Scholar
  6. 6.
    Coyle, D., Principe, J., Lotte, F., Nijholt, A.: Brain/neuronal - computer game interfaces and interaction. IEEE Trans. Comput. Intell. AI Games 5(2), 77–81 (2013)CrossRefGoogle Scholar
  7. 7.
    Lee, T.-S., Goh, S.J.A., Quek, S.Y., Phillips, R., Guan, C., et al.: A brain-computer interface based cognitive training system for healthy elderly: randomized control pilot study for usability and preliminary efficacy. PLoS ONE 8(11), e79419 (2013). doi: 10.1371/journal.pone.0079419 CrossRefGoogle Scholar
  8. 8.
    Pfurtscheller, G., Allison, B.Z., Brunner, C., Bauernfeind, G., Solis-Escalante, T., Scherer, R., Zander, T.O., Mueller-Putz, G., Neuper, C., Birbaumer, N.: The hybrid BCI. Front. Neurosci. 21(4), 30 (2010)Google Scholar
  9. 9.
    Ware, M., Lightbody, G., McCullagh, P., Mulvenna, M., Martin, S., Thompson, E.: A method for assessing the usability of an on screen display for a brain–computer interface. Int. J. Comput. Helathcare 2(1), 43–67 (2014). InderscienceCrossRefGoogle Scholar
  10. 10.
    Mulvenna, M., Lightbody, G., Thomson, E., McCullagh, P., Ware, M., Martin, S.: Realistic expectations with brain computer interfaces. J. Assistive Technol. 6(4), 233–244 (2012). doi: 10.1108/17549451211285735 CrossRefGoogle Scholar
  11. 11.
    Amiri, S., Rabbi, A., Azinfar, L., Fazel-Rezai, R.: Review of P300, SSVEP, and hybrid P300/SSVEP brain-computer interface systems. In: Fazel-Rezai, (ed.) Brain-Computer Interface Systems - Recent Progress and Future Prospects (2013). ISBN 978-953-51-1134-4Google Scholar
  12. 12.
    Vilimek, R., Zander, T.O.: BC(eye): combining eye-gaze input with brain-computer interaction. In: Stephanidis, C. (ed.) UAHCI 2009, Part II. LNCS, vol. 5615, pp. 593–602. Springer, Heidelberg (2009)Google Scholar
  13. 13.
    Brennan, C.P., McCullagh, P.J., Galway, L., Lightbody, G.: Promoting autonomy in a smart home environment with a smarter interface. In: 37th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), pp. 5032–5035. IEEE (2105)Google Scholar
  14. 14.
    Galway, L., Brennan, C., McCullagh, P., Lightbody, G.: BCI and eye gaze: collaboration at the interface. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2015. LNCS, vol. 9183, pp. 199–210. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  15. 15.
    Volosyak, I., Cecotti, H., Valbuena, D., Gräser, A.: Evaluation of the Bremen SSVEP based BCI in real world conditions. In: 2009 IEEE International Conference on Rehabilitation Robotics, pp. 322–331. IEEE (2009)Google Scholar
  16. 16.
    Gao, S., Wang, Y., Gao, X., Hong, B.: Visual and auditory brain-computer interfaces. IEEE Trans. Biomed. Eng. 61(5), 1436–1447 (2014)CrossRefGoogle Scholar
  17. 17.
    Brennan, C., McCullagh, P., Lightbody, G., Galway, L., Feuser, D., González, J.L., Martin, S.: Accessing tele-services using a hybrid bci approach. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2015. LNCS, vol. 9094, pp. 110–123. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  18. 18.
    Stinson, B., Arthur, D.: A novel EEG for alpha brain state training, neurobiofeedback and behavior change. Complement. Ther. Clin. Pract. 19(3), 114–118 (2013). doi: 10.1016/j.ctcp.2013.03.003 CrossRefGoogle Scholar
  19. 19.
    Plass-Oude Bos, D., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., Poel, M., Nijholt, A., Heylen, D.: Brain-computer interfacing and games. In: Tan, D.S., Nijholt, A. (eds.) Brain-Computer Interfaces. Human-Computer Interaction Series. Springer-Verlag London Limited (2010). doi: 10.1007/978-1-84996-272-8_10
  20. 20.
    Ortner, R., Irimia, D.C., Scharinger, J., Guger, C.: A motor imagery based brain-computer interface for stroke rehabilitation. Stud. Health Technol. Inform. 181, 319–323 (2012)Google Scholar
  21. 21.
    Xu, R., Jiang, N., Mrachacz-Kersting, N., Lin, C., Asin, G., Moreno, J., Pons, J., Dremstrup, K., Farina, D.: A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE Trans. Biomed. Eng. 61, 2092–2101 (2014). 9294:1-1CrossRefGoogle Scholar
  22. 22.
    Pichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., Paolucci, S., Inghilleri, M., Astolfi, L., Cincotti, F., Mattia, D.: Brain-computer interface boosts motor imagery practice during stroke recovery. Ann Neurol. 77(5), 851–865 (2015)CrossRefGoogle Scholar
  23. 23.
    Lulé, D., Noirhomme, Q., Kleih, S.C., Chatelle, C., Halder, S., Demertzi, A., Bruno, M.-A., Gosseries, O., Vanhaudenhuyse, A., Schnakers, C., Thonnard, M., Soddu, A., Kübler, A., Laureys, S.: Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin. Neurophysiol. 124, 101–106 (2013)CrossRefGoogle Scholar
  24. 24.
    Risetti, M., Formisano, R., Toppi, J., Quitadamo, L.R., Bianchi, L., Astolfi, L., Cincotti, F., Mattia, D.: On ERPs detection in disorders of consciousness rehabilitation. Front. Hum. Neurosci. 20(7), 775 (2013)Google Scholar
  25. 25.
    Wolpaw, J., Wolpaw, E.W.: Brain-Computer Interfaces: Principles and Practice. Oxford University Press, USA (2012)CrossRefGoogle Scholar
  26. 26.
    Huang, L., van Luijtelaar, G.: Brain computer interface for epilepsy treatment. In: Fazel-Rezai, R. (ed.) Brain-Computer Interface Systems - Recent Progress and Future Prospects (2013). ISBN 978-953-51-1134-4Google Scholar
  27. 27.
    Berka, C., Levendowski, D.J. et al.: EEG quantification of alertness: methods for early identification of individuals most susceptible to sleep deprivation. In: Caldwell, J.A., Wesensten, N.J. (eds.) Proceedings of the SPIE Defense and Security Symposium, Biomonitoring for Physiological and Cognitive Performance During Military Operations, vol. 5797, pp. 78–89 (2005)Google Scholar
  28. 28.
    Fadzal, C., Mansor, W., Khuan, L.: Review of brain computer interface application in diagnosing dyslexia. In: 2011 IEEE Control and System Graduate Research Colloquium (ICSGRC), pp. 124–128. IEEE (2011)Google Scholar
  29. 29.
    Friedrich, E.V.C., Suttie, N., Sivanathan, A., Lim, T., Louchart, S., Pineda, S.A.: Brain–computer interface game applications for combined neurofeedback and biofeedback treatment for children on the autism spectrum. Front. Neuroengineering 7, 21 (2013). doi: 10.3389/fneng.2014.00021 Google Scholar
  30. 30.
    Michelangelo Project. Accessed Feb 2016
  31. 31.
    Jamal, W., Das, S., Maharatna, K., Kuyucu, D.: Using brain connectivity measure of EEG synchrostates for discriminating typical and Autism Spectrum Disorder. In: 6th International IEEE/EMBS Conference on Neural Engineering, San Diego, pp. 1402–1405 (2013). doi: 10.1109/NER.2013.6696205
  32. 32.
    Jáuregui-Lobera, I.: Electroencephalography in eating disorders. Neuropsychiatr. Dis. Treat. 8, 1–11 (2012). doi: 10.2147/NDT.S27302 Google Scholar
  33. 33.
    Lee Hong, N., McCullagh, P., Howard, R.: An electrocortical correlate of a history of alcohol abuse in criminal offenders. Psychol. Crime Law 7(14), 105–117 (2001). doi: 10.1080/10683160108401790 Google Scholar
  34. 34.
    Abdulkader, S.N., Atia, A., Mostafa, M.M.: Brain computer interfacing? applications and challenges. Egypt. Inf. J. 16(2), 213–230 (2015). doi: 10.1016/j.eij.2015.06.002 CrossRefGoogle Scholar
  35. 35.
    Brunner, C., Birbaumer, N., Blankertz, B., Guger, C., Kübler, A., Mattia, D., Millán, J.D.R., Miralles, F., Nijholt, A., Opisso, E., Ramsey, N., Salomon, P., Müller-Putz, G.R.: BNCI Horizon 2020: towards a roadmap for the BCI community. Brain-Comput. Interfaces 2(1), 1–10 (2015)CrossRefGoogle Scholar
  36. 36.
    Sellers, E.W., Vaughan, T.M., Wolpaw, J.R.: A brain-computer interface for long-term independent home use. Amyotrophic Lateral Sclerosis 11(5), 449–455 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Paul McCullagh
    • 1
    Email author
  • Chris Brennan
    • 1
  • Gaye Lightbody
    • 1
  • Leo Galway
    • 1
  • Eileen Thompson
    • 3
  • Suzanne Martin
    • 2
  1. 1.Computer Science Research InstituteNewtownabbeyUK
  2. 2.Nursing & Health Research InstituteUlster UniversityJordanstownUK
  3. 3.The Cedar FoundationBelfastUK

Personalised recommendations