Poor BCI Performers Still Could Benefit from Motor Imagery Training

  • Alexander Kaplan
  • Anatoly Vasilyev
  • Sofya Liburkina
  • Lev Yakovlev
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9743)

Abstract

Nowadays, there is a growing number of studies suggesting that coupled with the brain-computer interface (BCI) the motor imagery practice could be a helpful tool in neurorehabilitation therapy, but the actual neurophysiological correlates of such exercise are poorly understood. In this study we examined two of the most notable neurophysiological effects of motor imagery – the EEG mu-rhythm desynchronization and the increase in cortical excitability assessed with transcranial magnetic stimulation (TMS). We have found that subjects’ BCI performance was highly correlated with mu-rhythm features and was not associated with the cortical excitability increase. Subjects with the lowest accuracy in BCI all had a statically significant excitability raise during motor imagery and did not differ from better performers. Our results suggest that poor BCI performers with weak EEG response still could benefit from the motor imagery training, and in that case cortex excitability level had to be considered for the control measurement.

Keywords

Motor imagery Brain-computer interface Transcranial magnetic stimulation Classification accuracy Electroencephalogram Cortical excitability Mu-rhythm Neurorehabilitation 

References

  1. 1.
    Jackson, P.L., Lafleur, M.F., Malouin, F., Richards, C., Doyon, J.: Potential role of mental practice using motor imagery in neurologic rehabilitation. Arch. Phys. Med. Rehabil. 82(8), 1133–1141 (2001)CrossRefGoogle Scholar
  2. 2.
    Page, S.J., Levine, P., Leonard, A.: Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke J. Cereb. Circ. 38(4), 1293–1297 (2007)CrossRefGoogle Scholar
  3. 3.
    Holmes, P., Calmels, C.: A neuroscientific review of imagery and observation use in sport. J. Mot. Behav. 40(5), 433–445 (2008)CrossRefGoogle Scholar
  4. 4.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. Official J. Int. Fed. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  5. 5.
    Kaplan, A., Shishkin, S., Ganin, I., Basyul, I., Zhigalov, A.: Adapting the P300-based brain–computer interface for gaming: a review. IEEE Trans. Comput. Intell. AI Games 5(2), 141–149 (2013)CrossRefGoogle Scholar
  6. 6.
    Rossini, P.M.: Noris Ferilli, M.A., Ferreri, F.: Cortical plasticity and brain computer interface. Eur. J. Phys. Rehabil. Med. 48(2), 307–312 (2012)Google Scholar
  7. 7.
    Alonso-Valerdi, L.M., Salido-Ruiz, R.A., Ramirez-Mendoza, R.A.: Motor imagery based brain-computer interfaces: an emerging technology to rehabilitate motor deficits. Neuropsychologia 79(Pt B), 354–363 (2015)CrossRefGoogle Scholar
  8. 8.
    Grosse-Wentrup, M., Schölkopf, B.: A review of performance variations in SMR-based brain − computer interfaces (BCIs). In: Guger, C., Allison, B.Z., Edlinger, G. (eds.) Brain-Computer Interface Research, pp. 39–51. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Allison, B.Z., Neuper, C.: Could anyone use a BCI? In: Tan, D.S., Nijholt, A. (eds.) Brain-Computer Interfaces, pp. 35–54. Springer, London (2010)CrossRefGoogle Scholar
  10. 10.
    Hammer, E.M., Halder, S., Blankertz, B., Sannelli, C., Dickhaus, T., Kleih, S., Muller, K.R., Kubler, A.: Psychological predictors of SMR-BCI performance. Biol. Psychol. 89(1), 80–86 (2012)CrossRefGoogle Scholar
  11. 11.
    Vuckovic, A., Osuagwu, B.A.: Using a motor imagery questionnaire to estimate the performance of a Brain-Computer Interface based on object oriented motor imagery. Clin. Neurophysiol. Official J. Int. Fed. Clin. Neurophysiol. 124(8), 1586–1595 (2013)CrossRefGoogle Scholar
  12. 12.
    Blankertz, B., Sannelli, C., Halder, S., Hammer, E.M., Kubler, A., Muller, K.R., Curio, G., Dickhaus, T.: Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51(4), 1303–1309 (2010)CrossRefGoogle Scholar
  13. 13.
    Halder, S., Varkuti, B., Bogdan, M., Kubler, A., Rosenstiel, W., Sitaram, R., Birbaumer, N.: Prediction of brain-computer interface aptitude from individual brain structure. Front. Hum. Neurosci. 7, 105 (2013)CrossRefGoogle Scholar
  14. 14.
    Hashimoto, R., Rothwell, J.C.: Dynamic changes in corticospinal excitability during motor imagery. Exp. Brain Res. 125(1), 75–81 (1999)CrossRefGoogle Scholar
  15. 15.
    Takemi, M., Masakado, Y., Liu, M., Ushiba, J.: Event-related desynchronization reflects downregulation of intracortical inhibition in human primary motor cortex. J. Neurophysiol. 110(5), 1158–1166 (2013)CrossRefGoogle Scholar
  16. 16.
    Oldfield, R.C.: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1), 97–113 (1971)CrossRefGoogle Scholar
  17. 17.
    Nuwer, M.R., Comi, G., Emerson, R., Fuglsang-Frederiksen, A., Guerit, J.M., Hinrichs, H., Ikeda, A., Luccas, F.J., Rappelsburger, P.: IFCN standards for digital recording of clinical EEG. International federation of clinical neurophysiology. Electroencephalogr. Clin. Neurophysiol. 106(3), 259–261 (1998)CrossRefGoogle Scholar
  18. 18.
    Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., Wolpaw, J.R.: BCI2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Bio-Med. Eng. 51(6), 1034–1043 (2004)CrossRefGoogle Scholar
  19. 19.
    Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 8(4), 441–446 (2000)CrossRefGoogle Scholar
  20. 20.
    Perrin, F., Pernier, J., Bertrand, O., Echallier, J.F.: Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 72(2), 184–187 (1989)CrossRefGoogle Scholar
  21. 21.
    Wang, D., Miao, D., Blohm, G.: Multi-class motor imagery EEG decoding for brain-computer interfaces. Front. Neurosci. 6, 151 (2012)CrossRefGoogle Scholar
  22. 22.
    Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., Pfurtscheller, G.: How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 145–147 (2003)CrossRefGoogle Scholar
  23. 23.
    Friedrich, E.V., Neuper, C., Scherer, R.: Whatever works: a systematic user-centered training protocol to optimize brain-computer interfacing individually. PLoS One 8(9), e76214 (2013)CrossRefGoogle Scholar
  24. 24.
    Vasilyev, A.N., Liburkina, S.P., Kaplan, A.Y.: Lateralization of EEG patterns in humans during motor imagery of arm movements in the brain-computer interface (in Russian). Zh. Vyssh. Nerv. Deiat. 66 (2016)Google Scholar
  25. 25.
    Yuan, H., Liu, T., Szarkowski, R., Rios, C., Ashe, J., He, B.: Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements. NeuroImage 49(3), 2596–2606 (2010)CrossRefGoogle Scholar
  26. 26.
    Horenstein, C., Lowe, M.J., Koenig, K.A., Phillips, M.D.: Comparison of unilateral and bilateral complex finger tapping-related activation in premotor and primary motor cortex. Hum. Brain Mapp. 30(4), 1397–1412 (2009)CrossRefGoogle Scholar
  27. 27.
    Wright, D.J., Williams, J., Holmes, P.S.: Combined action observation and imagery facilitates corticospinal excitability. Front. Hum. Neurosci. 8, 951 (2014)Google Scholar
  28. 28.
    Aono, K., Miyashita, S., Fujiwara, Y., Kodama, M., Hanayama, K., Masakado, Y., Ushiba, J.: Relationship between event-related desynchronization and cortical excitability in healthy subjects and stroke patients. Tokai J. Exp. Clin. Med. 38(4), 123–128 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Alexander Kaplan
    • 1
    • 2
    • 3
  • Anatoly Vasilyev
    • 1
    • 2
  • Sofya Liburkina
    • 1
    • 2
  • Lev Yakovlev
    • 1
    • 3
  1. 1.Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Pirogov Russian National Research Medical UniversityMoscowRussian Federation
  3. 3.Lobachevsky State University of Nizhni NovgorodNizhni NovgorodRussian Federation

Personalised recommendations