Monitoring Attention with Embedded Frequency Markers for Simulation Environments

  • Bartlett A.H. RussellEmail author
  • Jon C. Russo
  • Ian P. Warfield
  • William D. Casebeer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9743)


Monitoring both overt and covert attention shifts is critical for the accurate real-time assessment of user state in training or simulation environments. Current attention-monitoring methods predominantly include eye-tracking, but eye-tracking alone is blind to covert shifts in visual attention such as internal distraction and mind-wandering. Steady state visual evoked potentials (ssVEPs) are neural signals that are sensitive to covert attention shifts and offer a means to measure endogenous engagement. Laboratories use ssVEPS to study the dynamics of attentional systems, but the frequencies most often used are causes eyestrain and are highly distracting making them impractical for applied use within simulation or training environments. To overcome this limitation, we examine whether frequencies above the perceptual threshold are similarly sensitive to covert attention shifts. Our qualified results indicate supraperceptual threshold ssVEPs are sensitive to such shifts and should be considered for real-time use.


ssVEPs Simulation Training Attention 


  1. 1.
    Wang, H., Li, T., Huang, Z.: Remote control of an electrical car with SSVEP-based BCI. In: IEEE International Conference on Information Theory and Information Security, pp. 837–840 (2010)Google Scholar
  2. 2.
    Zhang, C., Kimura, Y., Higashi, H., Tanaka, T.: A simple platform of brain-controlled mobile robot and its implementation by SSVEP. In: IEEE International Joint Conference on Neural Networks (IJCNN), pp. 1–7 (2012)Google Scholar
  3. 3.
    Morgan, S.T., Hansen, J.C., Hillyard, S.A.: Selective attention to stimulus location modulates the steady-state visual evoked potential. Proc. Natl. Acad. Sci. 93(10), 4770–4774 (1996)CrossRefGoogle Scholar
  4. 4.
    Müller, M.M., Hillyard, S.: Concurrent recording of steady-state and transient event-related potentials as indices of visual-spatial selective attention. Clin. Neurophysiol. 111(9), 1544–1552 (2000)CrossRefGoogle Scholar
  5. 5.
    Corbetta, M., Shulman, G.L.: Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3(3), 201–215 (2002)CrossRefGoogle Scholar
  6. 6.
    Buschman, T.J., Miller, E.K.: Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315(5820), 1860–1862 (2007)CrossRefGoogle Scholar
  7. 7.
    Russell, B.A.H., Prosacco, A., Hatfield, B.D.: The dynamics of top-down attention control and bottom-up attention capture during threat of shock: an electroencephalographic investigation (In preparation)Google Scholar
  8. 8.
    Mishra, J., Zinni, M., Bavelier, D., Hillyard, S.A.: Neural basis of superior performance of action videogame players in an attention-demanding task. J. Neurosci. 31(3), 992–998 (2011)CrossRefGoogle Scholar
  9. 9.
    Moratti, S., Keil, A., Stolarova, M.: Motivated attention in emotional picture processing is reflected by activity modulation in cortical attention networks. Neuroimage 21(3), 954–964 (2004)CrossRefGoogle Scholar
  10. 10.
    Wieser, M.J., McTeague, L.M., Keil, A.: Sustained preferential processing of social threat cues: bias without competition? J. Cogn. Neurosci. 23(8), 1973–1986 (2011)CrossRefGoogle Scholar
  11. 11.
    Hajcak, G., MacNamara, A., Foti, D., Ferri, J., Keil, A.: The dynamic allocation of attention to emotion: simultaneous and independent evidence from the late positive potential and steady state visual evoked potentials. Biol. Psychol. 92(3), 447–455 (2013)CrossRefGoogle Scholar
  12. 12.
    Miskovic, V., Keil, A.: Perceiving threat in the face of safety: excitation and inhibition of conditioned fear in human visual cortex. J. Neurosci. 33(1), 72–78 (2013)CrossRefGoogle Scholar
  13. 13.
    Pastor, M.A., Artieda, J., Arbizu, J., Valencia, M., Masdeu, J.C.: Human cerebral activation during steady-state visual-evoked responses. J. Neurosci. 23(37), 11621–11627 (2003)Google Scholar
  14. 14.
    Ives, H.E.: Critical frequency relations in scotopic vision. JOSA 6(3), 254–267 (1922)CrossRefGoogle Scholar
  15. 15.
    Garcia, G.: High frequency SSVEPs for BCI applications. Computer-Human Interaction (2008)Google Scholar
  16. 16.
    Jasper, H.: Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr. Clin. Neurophysiol. 10, 370–375 (1958)CrossRefGoogle Scholar
  17. 17.
    Gray, M., Kemp, A.H., Silberstein, R.B., Nathan, P.J.: Cortical neurophysiology of anticipatory anxiety: an investigation utilizing steady state probe topography (SSPT). Neuroimage 20(2), 975–986 (2003)CrossRefGoogle Scholar
  18. 18.
    Ziegler, M.D., Kraft, A., Krein, M., Lo, L.C., Hatfield, B., Casebeer, W., Russell, B.: The use of computational human performance modeling as task analysis tool. In: Human Computer Interaction Proceedings (2016, submitted)Google Scholar
  19. 19.
    Parks, N.A., Beck, D.M., Kramer, A.F.: Enhancement and suppression in the visual field under perceptual load. Front. Psychol. 4(275), 10–3389 (2013)Google Scholar
  20. 20.
    Ding, J., Sperling, G., Srinivasan, R.: Attentional modulation of SSVEP power depends on the network tagged by the flicker frequency. Cereb. Cortex 16(7), 1016–1029 (2006)CrossRefGoogle Scholar
  21. 21.
    Sharpe, L.T., Stockman, A., MacLeod, D.I.: Rod flicker perception: scotopic duality, phase lags and destructive interference. Vis. Res. 29(11), 1539–1559 (1989)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Bartlett A.H. Russell
    • 1
    Email author
  • Jon C. Russo
    • 2
  • Ian P. Warfield
    • 1
  • William D. Casebeer
    • 1
  1. 1.Advanced Technology LaboratoriesLockheed MartinArlingtonUSA
  2. 2.Advanced Technology LaboratoriesLockheed MartinCherry HillUSA

Personalised recommendations