Advertisement

Paired Associative Stimulation with Brain-Computer Interfaces: A New Paradigm for Stroke Rehabilitation

  • Nikolaus SabathielEmail author
  • Danut C. Irimia
  • Brendan Z. Allison
  • Christoph Guger
  • Günter Edlinger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9743)

Abstract

In conventional rehabilitation therapy to help persons with stroke recover movement, there is no objective way to evaluate each patient’s motor imagery. Thus, patients may receive rewarding feedback even when they are not complying with the task instructions to imagine specific movements. Paired associative stimulation (PAS) uses brain-computer interface (BCI) technology to evaluate movement imagery in real-time, and use this information to control feedback presented to the patient. We introduce this approach and the RecoveriX system, a hardware and software platform for PAS. We then present initial results from two stroke patients who used RecoveriX, followed by future directions.

Keywords

Paired associative stimulation (PAS) Brain-computer interface (BCI) Motor imagery Stroke Rehabilitation 

References

  1. 1.
    Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., Pfurtscheller, G.: How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 145–147 (2003)CrossRefGoogle Scholar
  2. 2.
    Wolpaw, J.R., Winter Wolpaw, E. (eds.): Brain-Computer Interfaces: Principles and Practice. Oxford University Press, Oxford (2012)Google Scholar
  3. 3.
    Silvoni, S., Ramos-Murguialday, A., Cavinato, M., Volpato, C., Cisotto, G., Turolla, A., Piccione, F., Birbaumer, N.: Brain computer interface in stroke: a review of progress. Clin. EEG Neurosci. 42(4), 245–252 (2011)CrossRefGoogle Scholar
  4. 4.
    Mattia, D., Pichiorri, F., Molinari, M., Rupp, R.: Brain-computer interface for hand motor function restoration and rehabilitation. In: Allison, B.Z., Dunne, S., Leeb, R., Nijholt, A. (eds.) Towards Practical Brain-Computer Interfaces, pp. 131–154. Springer, Berlin (2012)CrossRefGoogle Scholar
  5. 5.
    Xu, R., Jiang, N., Mrachacz-Kersting, N., Lin, C., Asin, G., Moreno, J., Pons, J., Dremstrup, K., Farina, D.: A closed-loop brain-computer interface triggering an active ankle-foot orthosis for inducing cortical neural plasticity. IEEE Trans. Biomed. Eng. 9294, 1 (2014)Google Scholar
  6. 6.
    Belda-Lois, J.M., Mena-del Horno, S., Bermejo-Bosch, I., Moreno, J.C., Pons, J.L., Farina, D., Iosa, M., Tamburella, F., Ramos Murguialday, A., Caria, A., Solis-Escalante, T., Brunner, C., Rea, M.: Rehabilitation of gait after stroke: a review towards a top-down approach. J. Neuroeng. Rehabil. 8, 66 (2011)CrossRefGoogle Scholar
  7. 7.
    Ortner, R., Irimia, D.C., Scharinger, J., Guger, C.: A motor imagery based brain-computer interface for stroke rehabilitation. Stud. Health Technol. Inform. 181, 319–323 (2012)Google Scholar
  8. 8.
    Ang, K.K., Guan, C., Phua, K.S., Wang, C., Zhou, L., Tang, K.Y., et al.: Brain-computer interface-based robotic end effector system for wrist and hand rehabilitation: results of a three-armed randomized controlled trial for chronic stroke. Front. Neuroeng. 7, 30–31 (2014)CrossRefGoogle Scholar
  9. 9.
    Ortner, R., Ram, D., Kollreider, A., Pitsch, H., Wojtowicz, J., Edlinger, G.: Human-computer confluence for rehabilitation purposes after stroke. In: Shumaker, R. (ed.) VAMR 2013, Part II. LNCS, vol. 8022, pp. 74–82. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  10. 10.
    Pfurtscheller, G., Allison, B.Z., Brunner, C., Bauernfeind, G., Solis-Escalante, T., Scherer, R., Zander, T.O., Mueller-Putz, G., Neuper, C., Birbaumer, N.: The hybrid BCI. Front. Neurosci. 21(4), 30 (2010)Google Scholar
  11. 11.
    Neuper, C., Allison, B.Z.: The B of BCIs: neurofeedback principles and how they can yield clearer brain signals. In: Actis, R., Galmonte, A. (eds.) Different Psychological Perspectives on Cognitive Processes: Current Research Trends in Alps-Adria Region, pp. 133–153. Cambridge University Press, Cambridge (2014)Google Scholar
  12. 12.
    Brunner, C., Birbaumer, N., Blankertz, B., Guger, C., Kübler, A., Mattia, D., Millán, J.D.R., Miralles, F., Nijholt, A., Opisso, E., Ramsey, N., Salomon, P., Müller-Putz, G.R.: BNCI Horizon 2020: towards a roadmap for the BCI community. Brain Comput. Interfaces 2(1), 1–10 (2015)CrossRefGoogle Scholar
  13. 13.
    Allison, B.Z., Dunne, S., Leeb, R., Millan, J., Nijholt, A.: Recent and upcoming BCI progress: overview, analysis, and recommendations. In: Allison, B.Z., Dunne, S., Leeb, R., Millan, J., Nijholt, A. (eds.) Towards Practical BCIs: Bridging the Gap from Research to Real-World Applications, pp. 1–13. Springer, Berlin (2013)Google Scholar
  14. 14.
    Neuper, C., Scherer, R., Reiner, M., Pfurtscheller, G.: Imagery of motor actions: differential effects of kinesthetic and visual-motor mode of imagery in single-trial EEG. Brain Res. Cogn. Brain Res. 25(3), 668–677 (2005). Epub 19 October 2005CrossRefGoogle Scholar
  15. 15.
    Müller-Gerking, J., Pfurtscheller, G., Flyvbjerg, H.: Designing optimal spatial filters for single-trial EEG classification in a movement task. Clin. Neurophysiol. 110(5), 787–798 (1999)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nikolaus Sabathiel
    • 1
    Email author
  • Danut C. Irimia
    • 1
  • Brendan Z. Allison
    • 1
  • Christoph Guger
    • 1
    • 2
  • Günter Edlinger
    • 1
    • 2
  1. 1.Guger Technologies OGGrazAustria
  2. 2.g.tec Medical Engineering GmbHSchiedlbergAustria

Personalised recommendations