Advertisement

Using fNIRS for Real-Time Cognitive Workload Assessment

  • Samuel W. HincksEmail author
  • Daniel Afergan
  • Robert J. K. Jacob
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9743)

Abstract

In this paper, we evaluate the possibility of detecting continuous changes in the user’s cognitive workload using functional near-infrared spectroscopy (fNIRS). We dissect the source of meaning in a large collection of n-backs and argue that the problem of controlling the content of a participant’s mind poses a major problem for calibrating an algorithm using black box machine learning. We therefore suggest that the field simplify its task, and begin to focus on building algorithms that work on specialized subjects, before adapting these to a wider audience.

Keywords

fNIRS Physiological interface Implicit interface Machine learning Default mode network Cognitive workload 

References

  1. 1.
    Daniel, A., et al.: Dynamic difficulty using brain metrics of workload. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM (2014)Google Scholar
  2. 2.
    Daniel, A., et al.: Brain-based target expansion. In: Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology. ACM (2014)Google Scholar
  3. 3.
    Aqil, M., et al.: Cortical brain imaging by adaptive filtering of NIRS signals. Neurosci. Lett. 514(1), 35–41 (2012)CrossRefGoogle Scholar
  4. 4.
    Baddeley, A.D., Hitch, G.: Working memory. Psychol. Learn. Motiv. 8, 47–89 (1974)CrossRefGoogle Scholar
  5. 5.
    Iqbal, S.T., Zheng, X.S., Bailey, B.P.: Task-evoked pupillary response to mental workload in human-computer interaction. In: CHI 2004 Extended Abstracts on Human Factors in Computing Systems. ACM (2004)Google Scholar
  6. 6.
    Si, J., Zhao, R., Zhang, Y., Zuo, N., Zhang, X., Jiang, T.: A portable fNIRS system with eight channels. In: SPIE BiOS, International Society for Optics and Photonics, 93051B–93051B (2015)Google Scholar
  7. 7.
    Kumari, V., Williams, S.C., Gray, J.A.: Personality predicts brain responses to cognitive demands. J. Neurosci. 24(47), 10636–10641 (2004)CrossRefGoogle Scholar
  8. 8.
    Ferrari, M., Quaresima, V.: A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63(2), 921–935 (2012)CrossRefGoogle Scholar
  9. 9.
    Gevins, A., Smith, M.E.: Neurophysiological measures of cognitive workload during human-computer interaction. Theor. Issues Ergon. Sci. 4(1–2), 113–131 (2003)CrossRefGoogle Scholar
  10. 10.
    Herff, C., et al.: Mental workload during n-back task-quantified in the prefrontal cortex using fNIRS. Front. Hum. Neurosci. 7(1), 935–940 (2013)Google Scholar
  11. 11.
    Peck, E., Afergan, D., Jacob, R.: Investigation of fNIRS brain sensing as input to information filtering systems. In: Proceedings of the 4th Augmented Human International Conference. ACM (2013)Google Scholar
  12. 12.
    Peck, E.M., et al.: Using fNIRS to measure mental workload in the real world. In: Fairclough, S.H., Gilleade, K. (eds.) Advances in Physiological Computing, pp. 117–139. Springer, London (2014)CrossRefGoogle Scholar
  13. 13.
    Buckner, R.L., Andrews-Hanna, J.R., Schacter, D.L.: The brain’s default network. Ann. N. Y. Acad. Sci. 1124(1), 1–38 (2008)CrossRefGoogle Scholar
  14. 14.
    Rowe, D.W., Sibert, J., Irwin, D.L.: Heart rate variability: indicator of user state as an aid to human-computer interaction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press/Addison-Wesley Publishing Co. (1998)Google Scholar
  15. 15.
    Solovey, E.T., et al.: Designing implicit interfaces for physiological computing: guidelines and lessons learned using fNIRS. ACM Trans. Comput.-Hum. Interact. (TOCHI) 21(6), 35 (2015)Google Scholar
  16. 16.
    Solovey, E.T., et al.: Using fNIRS brain sensing in realistic HCI settings: experiments and guidelines. In: Proceedings of the 22nd Annual ACM Symposium on User Interface Software and Technology. ACM (2009)Google Scholar
  17. 17.
    Wager, T.D., Smith, E.E.: Neuroimaging studies of working memory. Cogn. Affect. Behav. Neurosci. 3(4), 255–274 (2003)CrossRefGoogle Scholar
  18. 18.
    Witten, I.H., et al.: Weka: practical machine learning tools and techniques with Java implementations, 17–81 (1999)Google Scholar
  19. 19.
    Zhang, Q., Strangman, G.E., Ganis, G.: Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work? Neuroimage 45(3), 788–794 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Samuel W. Hincks
    • 1
    Email author
  • Daniel Afergan
    • 2
  • Robert J. K. Jacob
    • 1
  1. 1.Tufts UniversityMedfordUSA
  2. 2.Google Inc.Mountain ViewUSA

Personalised recommendations