Advertisement

Modeling of Social Media Behaviors Using Only Account Metadata

  • Fernanda Carapinha
  • John Khoury
  • Shai Neumann
  • Monte Hancock
  • Federico Calderon
  • Mendi Drayton
  • Arvil Easter
  • Edward Stapleton
  • Alexander Vazquez
  • David Woolfolk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9744)

Abstract

Applications in Augmented Cognition can be hampered by obstacles to the effective instrumentation of the data space, making the collection of informative feature data difficult. These obstacles usually arise from technical limitations, but can also be present due to methodological and legal considerations. We address a specific instance of the difficulty of characterizing a complex behavior space under legally constrained data collection: the instrumentation of social media platforms, where privacy, policy, and marketing considerations can severely hamper 3rd-party data collection activities. This paper documents our constrained empirical analysis and characterization of the behaviors of Twitter account-holders from their account metadata alone. The characterization is performed by coding user account data as feature vectors in a low-dimensional Euclidean space, then applying parametric and non-parametric methods to the resulting empirical distribution. Suggestions for future work are offered.

Keywords

Twitter Social media Behavior modeling Metadata 

References

  1. 1.
    Java, A., Song, X., Finin, T., Tseng, B.: Why we twitter: understanding microblogging usage and communities. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, pp. 56–65. ACM, August 2007Google Scholar
  2. 2.
    Twitter. API Overview, Object: Users. Twitter Developers Field Guide, 20 February 2016. https://dev.twitter.com/overview/api/users
  3. 3.
    Mischaud, E.: Twitter: expressions of the whole self. In: An Investigation into User Appropriation of a Web-Based Communications Platform. Media@lse, London (2007). Accessed 20 Oct 2011Google Scholar
  4. 4.
    Aladwani, A.M.: Facilitators, characteristics, and impacts of Twitter use: theoretical analysis and empirical illustration. Int. J. Inf. Manag. 15–25 (2015)Google Scholar
  5. 5.
    Chu, Z., Gianvecchio, S., Wang, H., Jajodia, S.: Detecting automation of Twitter accounts. IEEE Trans. Dependable Secure Comput. 1–14 (2012)Google Scholar
  6. 6.
    Cresci, S., Di Pietro, R., Petrocchi, M., Spognardi, A., Tesconi, M.: Fame for sale: efficient detection of fake Twitter followers. Decis. Support Syst. 56–71 (2015)Google Scholar
  7. 7.
    Ferrarra, E., Varol, O., Davis, C., Menczer, F., Flammini, A.: The Rise of Social Bots. Cornell University, New York (2015)Google Scholar
  8. 8.
    Kang, H., Wang, K., Soukal, D., Behr, F., Zheng, Z.: Large scale bot detection for search engine. In: WWW 2010 Proceedings of the 19th International Conference on World Wide Web, pp. 501–510. ACM, New York (2010)Google Scholar
  9. 9.
    Twitter. API Overview, Object: Users. Twitter Developers Field Guide, 20 February 2016. https://dev.twitter.com/overview/api/users
  10. 10.
    Xiao, C., Freeman, D.M., Hwa, T.: Detecting clusters of fake accounts in online social. In: AISec 2015 Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security, pp. 91–101. ACM, New York (2015)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fernanda Carapinha
    • 1
  • John Khoury
    • 2
  • Shai Neumann
    • 2
  • Monte Hancock
    • 1
  • Federico Calderon
    • 1
  • Mendi Drayton
    • 1
  • Arvil Easter
    • 1
  • Edward Stapleton
    • 1
  • Alexander Vazquez
    • 1
  • David Woolfolk
    • 1
  1. 1.4DigitalLos AngelesUSA
  2. 2.Eastern Florida State CollegeCocoaUSA

Personalised recommendations