Advertisement

Collaborative Design of Material Handling Systems Using Distributed Virtual Reality Environments

  • Orthodoxos KipouridisEmail author
  • Moritz Roidl
  • Marcus Röschinger
  • Michael ten Hompel
  • Willibald A. Günthner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9740)

Abstract

In order to integrate with an upcoming ecosystem of interconnected products and services, adaptive, intelligent and autonomous material handling systems (MHS) are being deployed in modern logistics facilities, enabling them to cope with requirements for high flexibility, configurability and reusability. Recent advances in virtual engineering and virtual reality (VR) technologies offer new possibilities for remote collaboration between companies regarding the design process of MHS, which involves several stakeholders. In this paper, we present a 3D collaborative virtual environment (3DCVE) as part of distributed multi-platform software for supporting MHS design tasks in logistics facilities. We describe how an in-memory data grid technology can be used for the distribution of data and the enabling of consistent user access to the virtual environment (VE). The main focus is put on the use-case of facility layout planning presenting the implementation of approaches regarding user interaction and collaboration.

Keywords

3D collaborative virtual environments Material handling systems design Virtual reality 

References

  1. 1.
    Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Acatech, Frankfurt am Main (2013)Google Scholar
  2. 2.
    Mayer, S. H.: Development of a completely decentralized control system for modular continuous conveyor systems. Dissertation, University of Karlsruhe (TH) (2009)Google Scholar
  3. 3.
    Kipouridis, O., Roidl, M., Günthner, W.A., ten Hompel, M.: Cloud-based platform for collaborative design of decentralized controlled material flow systems in facility logistics. In: Kotzab, H., Pannek, J., Thoben, K.-L. (eds.) Dynamics in Logistics. Lecture Notes in Logistics, pp. 313–322. Springer, Heidelberg (2015)Google Scholar
  4. 4.
    Bullinger, H.-J., Potinecke, T., Tippmann, V., Rogowski, T.: Virtual engineering. Challenges and solutions. In: Proceedings of the 11th International HCI, vol. 5, p. 531 (2005)Google Scholar
  5. 5.
    Cecil, J., Kanchanapiboon, A.: Virtual engineering approaches in product and process design. Int. J. Adv. Manuf. Technol. 31(9), 846–856 (2007). SpringerCrossRefGoogle Scholar
  6. 6.
    Siller, H.R., Vila, C., Estruch, A., Abellán, V., Romero, F.: Managing collaborative process planning activities through extended enterprise. In: Wang, L., Nee, L., Yeh Ching, A. (eds.) Collaborative Design and Planning for Digital Manufacturing, p. 153. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bracht, U., Geckler, D., Wenzel, S.: Digitale Fabrik, Methoden und Praxisbeispiele, VDI. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Gausemeier, J., Rammig, F.J., Schäfer, W. (eds.): Design Methodology for Intelligent Technical Systems. Lecture Notes in Mechanical Engineering. pp. 12–19. Springer, Heidelberg (2014)Google Scholar
  9. 9.
    Grundig, C.: Fabrikplanung, Planungssystematik - Methoden - Anwendungen, pp. 37–40, Hanser, Munich (2014)Google Scholar
  10. 10.
    Frécon, E., Nöu, A.: Building distributed virtual environments to support collaborative work. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, pp. 105–113 (1998)Google Scholar
  11. 11.
    Oliviera, J., Shen, X., Georganas, N.: Collaborative virtual environment for industrial training and e-commerce. IEEE VRTS (2000)Google Scholar
  12. 12.
    Wright, T., Madey, G.: Survey of Collaborative Virtual Environment Technologies. University of Notre Dame, USA (2008)Google Scholar
  13. 13.
    Pick, S., et al.: A 3D collaborative virtual environment to integrate immersive virtual reality into factory planning processes. In: 2014 International Workshop on Collaborative Virtual Environments (3DCVE) (2014)Google Scholar
  14. 14.
    Weidig, C., et al.: Future internet-based collaboration in factory planning. Acta Polytech. Hung. 11(7), 157–177 (2014)Google Scholar
  15. 15.
    Menck, N., et al.: Collaborative factory planning in the virtual reality. In: 45th CIRP Conference on Manufacturing Systems (2012)Google Scholar
  16. 16.
    Mistrik, I., Grundy, J., van der Hoek, A., Whitehead, J.: Collaborative software engineering: challenges and prospects. In: Mistrik, I., Grundy, J., van der Hoek, A., Whitehead, J. (eds.) Collaborative Software Engineering, pp. 389–403. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    ten Hompel, M., Günthner, W.A., Roidl, M., Kipouridis, O.: KoDeMat - Befähigung von KMU zur kollaborativen Planung und Entwicklung heterogener, dezentral gesteuerter Materialflusssysteme, Report, Lehrstuhl für Fördertechnik Materialfluß Logistik (fml) Technische Universität München - Lehrstuhl für Förder- und Lagerwesen (FLW) Technische Universität Dortmund, BVL (2014)Google Scholar
  18. 18.
    Sonnenfroh, M., et al.: Massively multiuser virtual environments using object based sharing. Electronic Communications of the EASST, vol. 17 (2009)Google Scholar
  19. 19.
    Veentjer, P.: Mastering Hazelcast, the Ultimate Hazelcast Book, Hazelcast Inc. (2015). http://www.hazelcast.com
  20. 20.
    Evans B.: An Architect’s View of Hazelcast, White Paper, Hazelcast Inc. (2015). http://www.hazelcast.com
  21. 21.
    Choudhary, D.: A general multi-user undo/redo model. In: Proceedings of the Fourth European Conference on Computer-Supported Cooperative Work, ECSCW 1995 (1996)Google Scholar
  22. 22.
    Hudson, T.: Concurrency control for collaborative 3D graphics applications. Technical report, University of North Carolina at Chapel Hill, US (2000)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Orthodoxos Kipouridis
    • 1
    Email author
  • Moritz Roidl
    • 2
  • Marcus Röschinger
    • 1
  • Michael ten Hompel
    • 2
  • Willibald A. Günthner
    • 1
  1. 1.Institute for Materials Handling, Material Flow, LogisticsTechnische Universität MünchenMunichGermany
  2. 2.Chair of Materials Handling and WarehousingTechnische Universität DortmundDortmundGermany

Personalised recommendations