Hand Tracking and Haptic-Based Jugular Neonate Central Venous Access Procedure

  • Tatiana Ortegon-Sarmiento
  • Alvaro Uribe-Quevedo
  • Byron Perez-GutierrezEmail author
  • Lizeth Vega-Medina
  • Gerardo Tibamoso
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9740)


Medical simulators are important because they provide means to teach, learn, train, practice and develop skills necessary during medical practice. Simulation also allows exposing trainees to scenarios not possible during training, thus covering a wide range of life-like situations. Although widely used, simulation still faces challenges due to the high costs associated with the simulation equipment. Current advances in computer graphics and user interfaces provide affordable tools that allow exploring solutions in different medical fields. In this paper, we focus on the jugular central venous access performed on neonates, a procedure commonly practice to save lives through drug, nutrients and other medication administration. Simulation to practice this procedure is scarce and focused on adult simulation, yielding to transfer of knowledge to treat a neonate. Our approach focuses on developing a simulation prototype covering the preparation steps and execution of the procedure. To provide natural interactions, we integrated hand motion capture with haptics within a virtual environment representing the operation room. To study the prototype’s user experience we asked 12 participants from last year of medical school to use the prototype.


Simulator Central venous access Haptics Neonate Tracking Virtual reality 



This project was supported by the Research Division of Nueva Granada Mil. University through grant IMP ING 1776.


  1. 1.
    Amesur, N.B., Wang, D.C., Chang, W., Weiser, D., Klatzky, R., Shukla, G., Stetten, G.D.: Peripherally inserted central catheter placement using the sonic flashlight. J. Vasc. Interv. Radiol. 20(10), 1380–1383 (2009)CrossRefGoogle Scholar
  2. 2.
    Austin, M.: Ecg/ekg trace representation by creating a mesh (2014).
  3. 3.
    Brydges, R., Hatala, R., Zendejas, B., Erwin, P.J., Cook, D.A.: Linking simulation-based educational assessments and patient-related outcomes: a systematic review and meta-analysis. Acad. Med. 90(2), 246–256 (2015)CrossRefGoogle Scholar
  4. 4.
    Cartwright, D.: Central venous lines in neonates: a study of 2186 catheters. Arch. Dis. Child. Fetal Neonatal Ed. 89(6), F504–F508 (2004)CrossRefGoogle Scholar
  5. 5.
    CGtrader: Free 3d models.
  6. 6.
    Wikimedia Commons: Database center for life science (dbcls) - needle.
  7. 7.
    Digimation: The archive. license agreement.
  8. 8.
    Dzeka-Lozano, N., Higuera-Burgos, N., Vega-Medina, L., Uribe-Quevedo, A., Perez-Gutierrez, B., Tibamoso, G.: Development of an application for performing the subclavian central venous access on neonates. In: 2014 IEEE Games Media Entertainment (GEM), pp. 1–4. IEEE (2014)Google Scholar
  9. 9.
  10. 10.
    Fondation-Moveo: La ralit virtuelle au service du savoir des chirurgiens (2015).
  11. 11.
    Freire, F., Ramirez, W., Vallejo, H.: Sistema de entrenamiento virtual para medicina, June 2012.
  12. 12.
  13. 13.
    Harders, M., Bachofen, D., Grassi, M., Bajka, M., Spaelter, U., Teschner, M., Heidelberger, B., Sierra, R., Steinemann, D., Tuchschmid, S., et al.: Virtual reality based simulation of hysteroscopic interventions. Presence Teleoperators Virtual Environ. 17(5), 441–462 (2008)CrossRefGoogle Scholar
  14. 14.
    Investigación: y desarrollo: Diseñan sistema de entrenamiento virtual para cirujanos, April 2015.
  15. 15.
    Jain, P., Pant, D., Sood, J.: Atlas of Practical Neonatal and Pediatric Procedures. JP Medical Ltd, London (2012)Google Scholar
  16. 16.
    Kirurobo: A c# (.net) wrapper for sensable phantom device.
  17. 17.
  18. 18.
    Larnpotang, S., Lizdas, D., Rajon, D., Luria, I., Gravenstein, N., Bisht, Y., Schwab, W., Friedman, W., Bova, F., Robinson, A.: Mixed simulators: augmented physical simulators with virtual underlays. In: 2013 IEEE Virtual Reality (VR), pp. 7–10. IEEE (2013)Google Scholar
  19. 19.
    Motion, L.: Motion controller for games, design, virtual reality and more.
  20. 20.
    Bizzotto, M.N., Costanzo, M.A., Bizzotto, M.L.: Leap motion gesture control with osirix in the operating room to control imaging: first experiences during live surgery. Surg. Innov. 21(6), 655–656 (2014)CrossRefGoogle Scholar
  21. 21.
    OculusRift: Developer center.
  22. 22.
    Okuda, Y., Bryson, E.O., DeMaria, S., Jacobson, L., Quinones, J., Shen, B., Levine, A.I.: The utility of simulation in medical education: what is the evidence? Mt Sinai J. Med. J. Transl. Personalized Med. 76(4), 330–343 (2009)CrossRefGoogle Scholar
  23. 23.
    Pérez-Gutiérrez, B., Ariza-Zambrano, C., Hernández, J.C.: Mechatronic prototype for rigid endoscopy simulation. In: Shumaker, R. (ed.) Virtual and Mixed Reality, Part II, HCII 2011. LNCS, vol. 6774, pp. 30–36. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  24. 24.
    Perez-Gutierrez, B., Martinez, D.M., Rojas, O.E.: Endoscopic endonasal haptic surgery simulator prototype: a rigid endoscope model. In: 2010 IEEE Virtual Reality Conference (VR), pp. 297–298. IEEE (2010)Google Scholar
  25. 25.
    Picinbono, G., Delingette, H., Ayache, N.: Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Models 65(5), 305–321 (2003)CrossRefzbMATHGoogle Scholar
  26. 26.
  27. 27.
    Rey, C., Álvarez, F., De La Rua, V., Medina, A., Concha, A., Díaz, J.J., Menéndez, S., Los Arcos, M., Mayordomo-Colunga, J.: Mechanical complications during central venous cannulations in pediatric patients. Intensive Care Med. 35(8), 1438–1443 (2009)CrossRefGoogle Scholar
  28. 28.
    Sanín, C.S., Sánchez, P., Darío, R., Rave, M.E.A., Varela, L.F.L.: Manejo y complicaciones de catéteres venosos centrales en niños: hospital universitario san vicente de paúl, medellín, colombia. Iatreia 21, s8 (2008)Google Scholar
  29. 29.
  30. 30.
  31. 31.
    TedCas: Natural user interfaces for healthcare, January 2016.
  32. 32.
    TF3DM: 3d models for free.
  33. 33. Free phtobank - syringe.
  34. 34.
    Tsagarakis, N.G., Caldwell, D.G.: A 5 dof haptic interface for pre-operative planning of surgical access in hip arthroplasty. In: Eurohaptics Conference, 2005 and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2005, World Haptics 2005, First Joint, pp. 519–520. IEEE (2005)Google Scholar
  35. 35.
    Turbosquid: Royalty free license. all extended uses.
  36. 36.
    Unity: Game engine.
  37. 37.
    Vega-Medina, L., Perez-Gutierrez, B., Tibamoso, G., Uribe-Quevedo, A., Jaimes, N.: Vr central venous access simulation system for newborns. In: 2014 IEEE Virtual Reality (VR), pp. 121–122. IEEE (2014)Google Scholar
  38. 38.
    Vega-Medina, L., Tibamoso, G., Perez-Gutierrez, B.: VR tool for interaction with the abdomen anatomy. In: Stephanidis, C. (ed.) HCI International 2013-Posters’ Extended Abstracts. CCIS, vol. 374, pp. 235–239. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  39. 39.
    Wu, X., Downes, M.S., Goktekin, T., Tendick, F.: Adaptive nonlinear finite elements for deformable body simulation using dynamic progressive meshes. In: Computer Graphics Forum, vol. 20, pp. 349–358. Wiley Online Library (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Tatiana Ortegon-Sarmiento
    • 1
  • Alvaro Uribe-Quevedo
    • 1
  • Byron Perez-Gutierrez
    • 1
    Email author
  • Lizeth Vega-Medina
    • 1
  • Gerardo Tibamoso
    • 1
  1. 1.VR CenterNueva Granada Military UniversityBogotaColombia

Personalised recommendations