Advertisement

Depth Perception in Virtual Environment: The Effects of Immersive System and Freedom of Movement

  • Adrian K. T. NgEmail author
  • Leith K. Y. Chan
  • Henry Y. K. Lau
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9740)

Abstract

Concerns over the use of virtual reality (VR) systems in experimental psychological research exist. It is found that human egocentric depth perception in a virtual environment (VE) has significant errors compared to real physical environment. It is hypothesized that due to the presence of a human body as a size reference in a mixed reality CAVE-like system, the accuracy of depth estimation will improve. The second hypothesis proposes that when a participant is allowed to move around the VE, motion parallax will supplement the depth perception ability. Results showed that the features of an immersive system did not aid the estimation. Around 40 % underestimation of actual distance was observed above 15 m. By using a 3D-military jet instead of 2D-wall as the judgment object, a significant improvement in the accuracy is found. Pictorial cues were hence, suggested as the improvement basis for next part of the study.

Keywords

Depth perception Distance estimation imseCAVE Perception Virtual environment Virtual reality 

References

  1. 1.
    Burdea, G., Coiffet, P.: Virtual Reality Technology, 2nd edn. Wiley, New Jersey (2003)Google Scholar
  2. 2.
    Chan, L.K.Y., Lau, H.Y.K.: A cost effective virtual reality system for simulating logistics operations. Int. J. Logist. SCM. Syst. 6(1), 71–76 (2012)Google Scholar
  3. 3.
    Sherman, W.R., Craig, A.B.: Understanding Virtual Reality. Morgan Kaufmann Publishers, New York (2003)Google Scholar
  4. 4.
    Chan, L.K.Y.: MagicPad: A Spatial Human-System Interface for Immersive Virtual Environment (2015)Google Scholar
  5. 5.
    Wilson, C.J., Soranzo, A.: The use of virtual reality in psychology: a case study in visual perception. Comput. Math. Methods Med. 2015, 1–7 (2015)CrossRefGoogle Scholar
  6. 6.
    Kozlov, M.D., Johansen, M.K.: Real behavior in virtual environments: psychology experiments in a simple virtual-reality paradigm using video games. Cyberpsychol. Behav. Soc. Netw. 13(6), 711–714 (2010)CrossRefGoogle Scholar
  7. 7.
    Rizzo, A.A., Bowerly, T., Buckwalter, J.G., Schultheis, M.T., Matheis, R., Shahabi, C., Sharifzadeh, M.: Virtual environments for the assessment of attention and memory processes: the virtual classroom and office. In: Sharkey, P., Sik Lányi, C., Standen, P.J. (eds.) 4th International Conference on Disability, Virtual Reality and Associated Technology, ICDVRAT 2002, pp. 3–11. University of Reading, England (2002)Google Scholar
  8. 8.
    Lin, C.J., Woldegiorgis, B.H.: Interaction and visual performance in stereoscopic displays: A review. J. Soc. Inf Disp. 23(7), 319–332 (2015)CrossRefGoogle Scholar
  9. 9.
    Renner, R.S., Velichkovsky, B.M., Helmert, J.R.: The perception of egocentric distances in virtual environments- A review. ACM Comput. Surv. 46(2), 23 (2013)CrossRefGoogle Scholar
  10. 10.
    Walk, R.D., Gibson, E.J.: A comparative and analytical study of visual depth perception. Psychol. Monogr. 75(15), 1 (1961)CrossRefGoogle Scholar
  11. 11.
    Armbrüster, C., Wolter, M., Kuhlen, T., Spijkers, W., Fimm, B.: Depth perception in virtual reality: distance estimations in peri-and extrapersonal space. Cyberpsychol. Behav. 11(1), 9–15 (2008)CrossRefGoogle Scholar
  12. 12.
    Saracini, C.: Spatial cognition in Virtual Environments (2011)Google Scholar
  13. 13.
    Milgram, P., Takemura, H., Utsumi, A., Kishino, F.: Augmented reality: a class of displays on the reality-virtuality continuum. In: Telemanipulator and Telepresence Technologies. SPIE, vol. 2351, pp. 282–292 (1995)Google Scholar
  14. 14.
    Naceri, A., Chellali, R., Dionnet, F., Toma, S.: Depth perception within virtual environments: comparison between two display technologies. Int. J. Adv. Intel. Syst. 3, 51–64 (2010)Google Scholar
  15. 15.
    Murgia, A., Sharkey, P.M.: Estimation of distances in virtual environments using size constancy. Int. J. Virtual. Real. 8(1), 67–74 (2009)Google Scholar
  16. 16.
    Cutting, J.E.: How the eye measures reality and virtual reality. Behav. Res. Methods. Instrum. Comput. 29(1), 27–36 (1997)CrossRefGoogle Scholar
  17. 17.
    Luo, X., Kenyon, R., Kamper, D., Sandin, D., DeFanti, T.: The effects of scene complexity, stereovision, and motion parallax on size constancy in a virtual environment. In: 2007 Virtual Reality Conference, VR 2007, pp. 59–66. IEEE (2007)Google Scholar
  18. 18.
    Rogers, B., Graham, M.: Motion parallax as an independent cue for depth perception. Perception 8(2), 125–134 (1979)CrossRefGoogle Scholar
  19. 19.
    Klein, E., Swan, J.E., Schmidt, G.S., Livingston, M., Staadt, O.G.: Measurement protocols for medium-field distance perception in large-screen immersive displays. In: 2009 IEEE Virtual Reality Conference, pp. 107–113. IEEE Computer Society (2009)Google Scholar
  20. 20.
    Thompson, W.K., Willemsen, P., Gooch, A., Creem-Regehr, S.H., Loomis, J.M., Beall, A.C.: Does the quality of the computer graphics matter when judging distances in visually immersive environments? Presence-Teleop. Virt. 13(5), 560–571 (2004)CrossRefGoogle Scholar
  21. 21.
    Richardson, A.R., Waller, D.: Interaction with an immersive virtual environment corrects users’ distance estimates. Hum. Factors 49(3), 507–517 (2007)CrossRefGoogle Scholar
  22. 22.
    Renner, R.S., Velichkovsky, B.M., Helmert, J.R., Stelzer, R.H.: Measuring interpupillary distance might not be enough. In: ACM Symposium on Applied Perception, pp. 130–130. ACM (2013)Google Scholar
  23. 23.
    Ponto, K., Gleicher, M., Radwin, R.G., Shin, H.J.: Perceptual calibration for immersive display environments. IEEE Trans. Vis. Comput. Graph. 19(4), 691–700 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Adrian K. T. Ng
    • 1
    Email author
  • Leith K. Y. Chan
    • 1
  • Henry Y. K. Lau
    • 1
  1. 1.Department of Industrial and Manufacturing Systems EngineeringThe University of Hong KongHong KongChina

Personalised recommendations