Quantitative Validation of Gait and Swing Angles Determination from Inertial Signals

  • Paula Stepien
  • Zuzanna Miodonska
  • Agnieszka Nawrat-Szoltysik
  • Monika N. Bugdol
  • Michal Krecichwost
  • Pawel Badura
  • Piotr Zarychta
  • Marcin Rudzki
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 472)

Abstract

The still increasing life length expectancy creates new challenges in the field of senior care. It encourages researchers to provide the nursing homes and senior care assistants with tools that will both, rise an alarm in case of a sudden fall and collect data for long-term diagnosis of the declining motor abilities like the number of steps taken per day or changes in some gait parameters. This paper presents a quantitative validation of a remote system for activity monitoring of the elderly based on inertial sensors. It focuses on features connected to walk quality such as number of steps and the swing angle outlined by an ankle in the sagittal plane during walk. A measurement protocol is proposed, a validation method is described and the obtained results are discussed.

Keywords

Gait parameters Inertial sensors Activity monitoring Signal processing 

Notes

Acknowledgments

Project co-financed by the European Regional Development Fund under the Operational Programme Innovative Economy, project no. POIG.01.03.01-24-061/12. The authors wish to thank the medical staff of the Nursing Home Święta Elżbieta in Ruda Śląska for the possibility of conducting the experiments.

References

  1. 1.
    Augustyniak, P., Smolen, M., Mikrut, Z., Kantoch, E.: Seamless tracing of human behavior using complementary wearable and house-embedded sensors. Sensors 14(5), 7831–7856 (2014). http://www.mdpi.com/1424-8220/14/5/7831
  2. 2.
    Badura, P.: Accelerometric signals in automatic balance assessment. Comput. Med. Imaging Graph. 46, 169–177 (2015). http://www.sciencedirect.com/science/article/pii/S0895611115000932
  3. 3.
    Badura, P., Pietka, E., Franiel, S.: Acceleration trajectory analysis in remote gait monitoring. In: Engineering in Medicine and Biology Society (EMBC) 2014 36th Annual International Conference of the IEEE. pp. 4615–4618 (2014)Google Scholar
  4. 4.
    Bussmann, J., Martens, W., Tulen, J., Schasfoort, F., van den Berg-Emons, H., Stam, H.: Measuring daily behavior using ambulatory accelerometry: the activity monitor. Behav. Res. Methods Instrum. Comput. 33(3), 349–356 (2001)CrossRefGoogle Scholar
  5. 5.
    Charlon, Y., Fourty, N., Bourennane, W., Campo, E.: Design and evaluation of a device worn for fall detection and localization: application for the continuous monitoring of risks incurred by dependents in an alzheimer’s care unit. Expert Syst. Appl. 40(18), 7316–7330 (2013)CrossRefGoogle Scholar
  6. 6.
    Costa, Â., Castillo, J.C., Novais, P., Fernández-Caballero, A., Simoes, R.: Sensor-driven agenda for intelligent home care of the elderly. Expert Syst. Appl. 39(15), 12192–12204 (2012)CrossRefGoogle Scholar
  7. 7.
    Godfrey, A., Conway, R., Meagher, D., OLaighin, G.: Direct measurement of human movement by accelerometry. Med. Eng. Phys. 30(10), 1364–1386 (2008)Google Scholar
  8. 8.
    Lee, S.W., Song, S.H.: A monitoring system for assessing life pattern of the elderly living alone. Adv. Inf. Sci. Serv. Sci. 3(7), 311–323 (2011)MathSciNetGoogle Scholar
  9. 9.
    Lubina, P., Rudzki, M.: Artificial neural networks in accelerometer-based human activity recognition. In: Mixed Design of Integrated Circuits Systems (MIXDES), 2015 22nd International Conference. pp. 63–68 (2015)Google Scholar
  10. 10.
    Marco, A., Casas, R., Falco, J., Gracia, H., Artigas, J.I., Roy, A.: Location-based services for elderly and disabled people. Comput. Commun. 31(6), 1055–1066 (2008). http://dx.doi.org/10.1016/j.comcom.2007.12.031
  11. 11.
    Mitas, A.W., Rudzki, M., Skotnicka, M., Lubina, P.: Activity monitoring of the elderly for telecare systems—review. In: Information Technologies in Biomedicine, Volume 4, Advances in Intelligent Systems and Computing, vol. 284, pp. 125–138. Springer (2014)Google Scholar
  12. 12.
    Mitas, A.W., Rudzki, M., Wieclawek, W., Zarychta, P., Piwowarski, S.: Wearable system for activity monitoring of the elderly. In: Information Technologies in Biomedicine, Volume 4, Advances in Intelligent Systems and Computing, vol. 284, pp. 147–160. Springer (2014)Google Scholar
  13. 13.
    Oshima, Y., Kawaguchi, K., Tanaka, S., Ohkawara, K., Hikihara, Y., Ishikawa-Takata, K., Tabata, I.: Classifying household and locomotive activities using a triaxial accelerometer. Gait Posture 31(3), 370–374 (2010)CrossRefGoogle Scholar
  14. 14.
    Ravi, N., Dandekar, N., Mysore, P., Littman, M.L.: Activity recognition from accelerometer data. In: In Proceedings of the Seventeenth Conference on Innovative Applications of Artificial Intelligence (IAAI), pp. 1541–1546. AAAI Press (2005)Google Scholar
  15. 15.
    Tasoulis, S., Doukas, C., Plagianakos, V., Maglogiannis, I.: Statistical data mining of streaming motion data for activity and fall recognition in assistive environments. Neurocomputing 107, 87–96 (2013). Timely Neural Networks Applications in Engineering Selected Papers from the 12th EANN International Conference (2011)Google Scholar
  16. 16.
    Tseng, S., Li, W.L., Sheng, C.Y., Hsu, J.W., Chen, C.S.: Motion and attitude estimation using inertial measurements with complementary filter. In: 2011 8th Asian Control Conference (ASCC), pp. 863–868 (2011)Google Scholar
  17. 17.
    Virone, G., Alwan, M., Dalal, S., Kell, S.W., Turner, B., Stankovic, J.A., Felder, R.A.: Behavioral patterns of older adults in assisted living. IEEE Trans. Inf. Technol. Biomed. 12(3), 387–398 (2008)CrossRefGoogle Scholar
  18. 18.
    Yang, C.C., Hsu, Y.L.: Remote monitoring and assessment of daily activities in the home environment. J. Clin. Gerontol. Geriatr. 3(3), 97–104 (2012). http://www.sciencedirect.com/science/article/pii/S2210833512000494
  19. 19.
    Yu, M., Rhuma, A., Naqvi, S., Wang, L., Chambers, J.: A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment. IEEE Trans. Inf. Technol. Biomed. 16(6), 1274–1286 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Paula Stepien
    • 1
  • Zuzanna Miodonska
    • 1
  • Agnieszka Nawrat-Szoltysik
    • 2
  • Monika N. Bugdol
    • 1
  • Michal Krecichwost
    • 1
  • Pawel Badura
    • 1
  • Piotr Zarychta
    • 1
  • Marcin Rudzki
    • 1
  1. 1.Faculty of Biomedical EngineeringSilesian University of TechnologyZabrzePoland
  2. 2.The Jerzy Kukuczka Academy of Physical Education in KatowiceKatowicePoland

Personalised recommendations