A Formal Model for Context-Aware Semantic Augmented Reality Systems

  • Tamás MatuszkaEmail author
  • Attila Kiss
  • Woontack Woo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9749)


The Augmented Reality applications have received great attention in the recent years. However, there is still a lack of formal description of such systems currently. In this paper, we propose a new formal model for context-aware semantic Augmented Reality systems. The model can be divided into two parts: a set-theory function based method allows the formalization of an Augmented Reality system while an integrated time-space-motion logic provides the description of the behavior of the system. The suggested model enables the characterization of an Augmented Reality system with mathematical precision. In addition, logical inferences can be performed by means of the logic part of the formal description. The practical applicability of the proposed model is shown through use cases.


Augmented reality Semantic web Context-aware computing Formal model 



This research is supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative contents Agency (KOCCA) in the Culture Technology (CT) Research & Development Program 2014.


  1. 1.
    Azuma, R.T.: A survey of augmented reality. Presence 6(4), 355–385 (1997)CrossRefGoogle Scholar
  2. 2.
    Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Mobile Computing Systems and Applications, pp. 85–90 (1994)Google Scholar
  3. 3.
    Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 77(12), 1321–1329 (1994)Google Scholar
  4. 4.
    Reicher, T.: A framework for dynamically adaptable augmented reality systems. PhD dissertation, Technical University Munich (2004)Google Scholar
  5. 5.
    Galton, A.: Towards an integrated logic of space, time, and motion. IJCAI 93, 1550–1555 (1993)Google Scholar
  6. 6.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. KR 92, 165–176 (1992)Google Scholar
  7. 7.
    Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 233–246. ACM (2002)Google Scholar
  8. 8.
    Bernstein, P.A., Rahm, E.: A survey of approaches to automatic schema matching. VLDB J. 10(4), 334–350 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widom, J.: Swoosh: a generic approach to entity resolution. VLDB J. 18(1), 255–276 (2009)CrossRefGoogle Scholar
  10. 10.
    Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database Syst. 34(3), 16 (2009)CrossRefGoogle Scholar
  11. 11.
    Volz, R., Kleb, J., Mueller, W.: Towards ontology-based disambiguation of geographical identifiers. In: I3 (2007)Google Scholar
  12. 12.
    Ricci, F., Rokach, L., Shapira, B., Kantor, P.B.: Recommender Systems Handbook. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Matuszka, T., Kámán, S., Kiss, A.: A semantically enriched augmented reality browser. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014, Part I. LNCS, vol. 8525, pp. 375–384. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Kim, E., Kim, S., Kim, J., Matuszka, T., Park, N., Park, H., Jo, J., Kim, K., Hong, S., Kim, J., Woo, W.: AR reference model in k-culture time machine. In: Proceedings of HCI International 2016. Springer International Publishing, Heidelberg (2016)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Eötvös Loránd UniversityBudapestHungary
  2. 2.KAISTDaejeonSouth Korea
  3. 3.J. Selye UniversityKomárnoSlovakia

Personalised recommendations