Affect and Atmosphere in Controlled Responsive Environments

  • Andreas SimonEmail author
  • Jan Torpus
  • Christiane Heibach
  • Jose Navarro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9749)


We explore the atmospheric potential and the affective connection between humans and their instrumented, responsive environments and develop corresponding artistic design strategies, evaluating ubicomp environments from a critical perspective, beyond pure application and usefulness. We have designed an abstract, cocoon-like, responsively mediated space and conducted a series of experiments with a total of 17 participants. Results show that participants experience affection, a coupling between themselves and the designed environment, and show strong cognitive engagement to understand and structure the environment through patterns of situation awareness and sensemaking.


Ubicomp Biofeedback Atmosphere Environment Affection Sensemaking 


  1. 1.
    Hansen, M.B.: Ubiquitous sensation: toward an atmospheric, collective, and microtemporal model of media. In: Ekman, U. (ed.) Throughout: Art and Culture Emerging with Ubiquitous Computing, pp. 63–88. MIT Press, Cambridge (2013)Google Scholar
  2. 2.
    Hansen, M.B.: Engineering pre-individual potentiality: technics, transindividuation, and 21 st-century media. SubStance 41(3), 48 (2012)Google Scholar
  3. 3.
    Borgdorff, H.: The production of knowledge in artistic research. In: Biggs, M., Karlsson, H. (eds.) The Routledge Companion to Research in the Arts, pp. 44–63. Routledge, Oxon (2011)Google Scholar
  4. 4.
    Chanel, G., Rebetez, C., Bétrancourt, M., Pun, T.: Emotion assessment from physiological signals for adaptation of game difficulty. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 41(6), 1052–1063 (2011). IEEE Press, New YorkCrossRefGoogle Scholar
  5. 5.
    Parnandi, A., Son, Y., Gutierrez-Osuna, R.: A control-theoretic approach to adaptive physiological games. In: Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII), pp. 7–12. IEEE Press, New York (2013)Google Scholar
  6. 6.
    Wu, D., Courtney, C.G., Lance, B.J., Narayanan, S.S., Dawson, M.E., Oie, K.S., Parsons, T.D.: Optimal arousal identification and classification for affective computing using physiological signals: virtual reality Stroop task. IEEE Trans. Affect. Comput. 1(2), 109–118 (2010). IEEE Press, New YorkCrossRefGoogle Scholar
  7. 7.
    Tsakiris, M., Haggard, P.: The rubber hand illusion revisited: visuotactile integration and self-attribution. J. Exp. Psychol. Hum. Percept. Perform. 31(1), 80–91 (2005). APA, Washington, D.C.CrossRefGoogle Scholar
  8. 8.
    Pfeiffer, C., Schmutz, V., Blanke, O.: Visuospatial viewpoint manipulation during full-body illusion modulates subjective first-person perspective. Exp. Brain Res. 232(12), 4021–4033 (2014)CrossRefGoogle Scholar
  9. 9.
    Cassinelli, A., Reynolds, C., Ishikawa, M.: Augmenting spatial awareness with haptic radar. In: 10th IEEE International Symposium on Wearable Computers, pp. 61–64. IEEE Press, New York (2006)Google Scholar
  10. 10.
    Schnädelbach, H., Glover, K., Irune, A.A.: ExoBuilding: breathing life into architecture. In: Proceedings of the 6th Nordic Conference on Human-Computer Interaction: Extending Boundaries, pp. 442–451. ACM, New York (2010)Google Scholar
  11. 11.
    Jager, N., Moran, S., Schnädelbach, H.: Using adaptive architecture to support yoga practices: social considerations for design. In: 2014 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 364–369 (2014). IEEE Press, New York (2014)Google Scholar
  12. 12.
    Beesley, P.: Protocell mesh. In: Stacey, M. (ed.) Prototyping Architecture, pp. 58–61. Riverside Architectural Press, Toronto (2013)Google Scholar
  13. 13.
    Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)CrossRefGoogle Scholar
  14. 14.
    Suchman, L.: Human-Machine Reconfigurations: Plans and Situated Actions, p. 268. Cambridge University Press, New York (2007)Google Scholar
  15. 15.
    Davies, C., Harrison, J.: Osmose: towards broadening the aesthetics of virtual reality. Comput. Graph. 30(4), 25–28 (1996)CrossRefGoogle Scholar
  16. 16.
    Latour, B.: Reassembling the Social: An Introduction to Actor-Network-Theory. Oxford University Press, New York (2005)Google Scholar
  17. 17.
    Benyon, D.: Spaces of interaction, places for experience. In: Synthesis Lectures on Human-Centered Information, vol. 7, no. 2, pp. 1–129 (2014)Google Scholar
  18. 18.
    Relph, E.: Place and Placelessness, vol. 67, p. 45. Pion, London (1976)Google Scholar
  19. 19.
    Gibson, J.J.: The theory of affordances. In: Shaw, R., Bransford, J. (eds.) Perceiving, Acting, and Knowing: Toward An Ecological Psychology, pp. 67–82. Erlbaum, Hillsdale (1977)Google Scholar
  20. 20.
    Malafouris, L.: How Things Shape the Mind. MIT Press, Cambridge (2013)Google Scholar
  21. 21.
    Gins, M., Arakawa, S.: Architectural Body. University of Alabama Press, Tuscaloosa (2002)Google Scholar
  22. 22.
    Johnson-Laird, P.N.: Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness, no. 6. Harvard University Press, Cambridge (1983)Google Scholar
  23. 23.
    Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Hum. Factors J. Hum. Factors Ergon. Soc. 37(1), 32–64 (1995)CrossRefGoogle Scholar
  24. 24.
    McCarthy, J., Wright, P.: Technology as Experience, p. 124. MIT Press, Cambridge (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andreas Simon
    • 1
    Email author
  • Jan Torpus
    • 1
  • Christiane Heibach
    • 1
  • Jose Navarro
    • 2
  1. 1.IXDMFHNW Academy of Art and DesignBaselSwitzerland
  2. 2.FHNW Academy of Art and DesignBaselSwitzerland

Personalised recommendations