Investigating Low-Cost Wireless Occupancy Sensors for Beds

  • Andreas Braun
  • Martin Majewski
  • Reiner Wichert
  • Arjan Kuijper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9749)

Abstract

Occupancy sensors are used in care applications to measure the presence of patients on beds or chairs. Sometimes it is necessary to swiftly alert help when patients try to get up, in order to prevent falls. Most systems on the market are based on pressure-mats that register changes in compression. This restricts their use to applications below soft materials. In this work we want to investigate two categories of occupancy sensors with the requirements of supporting wireless communication and a focus on low-cost of the systems. We chose capacitive proximity sensors and accelerometers that are placed below the furniture. We outline two prototype systems and methods that can be used to detect occupancy from the sensor data. Using object detection and activity recognition algorithms, we are able to distinguish the required states and communicate them to a remote system. The systems were evaluated in a study and reached a classification accuracy between 79 % and 96 % with ten users and two different beds.

Keywords

Capacitive proximity sensors Bluetooth LE Smart furniture Home automation 

References

  1. 1.
    Tunstall: Tunstall Bed Occupancy Sensor. http://www.tunstall.co.uk/solutions/bed-occupancy-sensor. Accessed 26 Feb 2016
  2. 2.
    Punch Through Design: The LightBlue Bean. http://legacy.punchthrough.com/bean/. Accessed 26 Feb 2016
  3. 3.
    Badger, P.: Capacitive Sensing Library. http://playground.arduino.cc/Main/CapacitiveSensor
  4. 4.
    Harada, T., Mori, T., Nishida, Y., Yoshimi, T., Sato, T.: Body parts positions and posture estimation system based on pressure distribution image. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), pp. 968–975. IEEE (1999)Google Scholar
  5. 5.
    Harada, T., Sato, T., Mori, T.: Human motion tracking system based on skeleton and surface integration model using pressure sensors distribution bed. In: Proceedings Workshop on Human Motion, pp. 99–106 (2000)Google Scholar
  6. 6.
    Tan, H.Z., Slivovsky, L.A., Pentland, A., Member, S.: A sensing chair using pressure distribution sensors. IEEE/ASME Trans. Mechatron. 6, 261–268 (2001)CrossRefGoogle Scholar
  7. 7.
    Griffiths, E., Saponas, T.S., Brush, A.J.B.: Health chair: implicitly sensing heart and respiratory rate. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing - UbiComp 2014 Adjunct, pp. 661–671. ACM Press, New York (2014)Google Scholar
  8. 8.
    Braun, A., Frank, S., Wichert, R.: The capacitive chair. In: Streitz, N., Markopoulos, P. (eds.) DAPI 2015. LNCS, vol. 9189, pp. 397–407. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  9. 9.
    Braun, A., Schembri, I., Frank, S.: ExerSeat - sensor-supported exercise system for ergonomic microbreaks. In: De Ruyter, B., et al. (eds.) AmI 2015. LNCS, vol. 9425, pp. 236–251. Springer, Heidelberg (2015). doi:10.1007/978-3-319-26005-1_16 CrossRefGoogle Scholar
  10. 10.
    Djakow, M., Braun, A., Marinc, A.: MoviBed - sleep analysis using capacitive sensors. In: Antona, M., Stephanidis, C. (eds.) UAHCI 2014, Part IV. LNCS, vol. 8516, pp. 171–181. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Braun, A., Heggen, H.: Context recognition using capacitive sensor arrays in beds. In: Proceedings AAL-Kongress (2012)Google Scholar
  12. 12.
    Rus, S., Grosse-Puppendahl, T., Kuijper, A.: Recognition of bed postures using mutual capacitance sensing. In: Aarts, E., et al. (eds.) AmI 2014. LNCS, vol. 8850, pp. 51–66. Springer, Heidelberg (2014)Google Scholar
  13. 13.
    MacLachlan, R.: Spread Spectrum Capacitive Proximity Sensor. http://humancond.org/wiki/user/ram/electro/capsense/0main. Accessed 26 Feb 2016
  14. 14.
    Braun, A., Wichert, R., Kuijper, A., Fellner, D.W.: Capacitive proximity sensing in smart environments. J. Ambient Intell. Smart Environ. 7, 1–28 (2015)Google Scholar
  15. 15.
    Jones, C., Campbell, S., Zone, S.: Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat. Med. 5(9), 1062–1065 (1999)CrossRefGoogle Scholar
  16. 16.
    Krejcar, O., Jirka, J., Janckulik, D.: Use of mobile phones as intelligent sensors for sound input analysis and sleep state detection. Sensors 11, 6037–6055 (2011)CrossRefGoogle Scholar
  17. 17.
    Apple Inc.: iBeacon for developers. https://developer.apple.com/ibeacon/. Accessed 26 Feb 2016
  18. 18.
    Grosse-Puppendahl, T., Berghoefer, Y., Braun, A., Wimmer, R., Kuijper, A.: OpenCapSense: a rapid prototyping toolkit for pervasive interaction using capacitive sensing. In: 2013 IEEE International Conference on Pervasive Computing and Communications, PerCom 2013, pp. 152–159 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Andreas Braun
    • 1
    • 2
  • Martin Majewski
    • 1
  • Reiner Wichert
    • 1
  • Arjan Kuijper
    • 1
    • 2
  1. 1.Fraunhofer Institute for Computer Graphics Research IGDDarmstadtGermany
  2. 2.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations