Advertisement

Machine Learning and Location Fingerprinting to Improve UX in a Ubiquitous Application

  • Rainara M. Carvalho
  • Ismayle S. Santos
  • Ricardo G. Meira
  • Paulo A. Aguilar
  • Rossana M. C. Andrade
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9749)

Abstract

GREatPrint is a ubiquitous application that prints documents from mobile devices to the closest printer to the user at the GREat research lab. The first version of the application (GREatPrint V1) was evaluated and showed a low accuracy in the detection of the closest printer. In order to improve the application, this study proposes a new version of GREatPrint (GREatPrint V2) based on a machine learning algorithm and location fingerprinting technique. Therefore, this paper describes GREatPrint V2 with the approach used to improve its context-awareness. Also, it presents results from a case study performed to evaluate the user interaction quality through software quality measures for ubiquitous systems.

Keywords

Ubiquitous application RSSI Fingerprinting Machine learning User experience Context-awareness Calmness 

Notes

Acknowledgments

We would like to thank the CTQS/GREat team for the technical support for this work and also to the CAcTUS - ContextAwareness Testing for Ubiquitous Systems project supported by CNPq (MCT/CNPq 14/2013 - Universal) under grant number 484380/2013-3.

References

  1. 1.
    Ladd, A.M., Bekris, K.E., Rudys, A.P., Wallach, D.S., Kavraki, L.E.: On the feasibility of using wireless ethernet for indoor localization. IEEE Trans. Robot. Autom. 20(3), 555–559 (2004)CrossRefGoogle Scholar
  2. 2.
    Quan, M., Navarro, E., Peuker, B.: Wi-Fi Localization Using RSSI Fingerprinting (2010)Google Scholar
  3. 3.
    Luo, Y., Hoeber, O., Chen, Y.: Enhancing Wi-Fi fingerprinting for indoor positioning using human-centric collaborative feedback. Hum.-Centric Comput. Inf. Sci. 3(1), 1–23 (2013)CrossRefGoogle Scholar
  4. 4.
    Carvalho, R.M., Andrade, R.M.C., Oliveira, K.M.: Using the GQM method to evaluate calmness in ubiquitous applications. In: Streitz, N., Markopoulos, P. (eds.) DAPI 2015. LNCS, vol. 9189, pp. 13–24. Springer, Heidelberg (2015)CrossRefGoogle Scholar
  5. 5.
    Jain, A.K., Duin, R.P., Mao, J.: Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 4–37 (2000)CrossRefGoogle Scholar
  6. 6.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)CrossRefGoogle Scholar
  7. 7.
    Bennett, J., Lanning, S.: The netflix prize. In: Proceedings of KDD cup and workshop (2007)Google Scholar
  8. 8.
    Langley, P.: Machine learning for adaptive user interfaces. In: Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS, vol. 1303, pp. 53–62. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron) a review of applications in the atmospheric sciences. Atmos. Environ. 32(14), 2627–2636 (1998)CrossRefGoogle Scholar
  10. 10.
    Taheri, A., Singh, A., Emmanuel, A.: Location fingerprinting on infrastructure 802.11 Wireless Local Area Networks (WLANs) using Locus. In: 29th Annual IEEE International Conference on Local Computer Networks, pp. 676–683 (2004)Google Scholar
  11. 11.
    Honkavirta, V., Perälä, T., Ali-Löytty, S., Piché, R.: Location fingerprinting methods in wireless local area networks. Master of Science Thesis. Tampere University of Technology, Finland (2008)Google Scholar
  12. 12.
    Arhippainen, L., Thti, M.: Empirical evaluation of user experience in two adaptive mobile application prototypes. In: Proceedings of the 2nd international conference on mobile and ubiquitous multimedia, pp. 27–34 (2003)Google Scholar
  13. 13.
    Kuniavsky, M.: Smart Things: Ubiquitous Computing User Experience Design. Elsevier, Amsterdam (2010)Google Scholar
  14. 14.
    Santos, R.M., de Oliveira, K.M., Andrade, R.M.C., Santos, I.S., Lima, E.R.: A quality model for human-computer interaction evaluation in ubiquitous systems. In: Collazos, C., Liborio, A., Rusu, C. (eds.) CLIHC 2013. LNCS, vol. 8278, pp. 63–70. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  15. 15.
    Ranganathan, A., Al-Muhtadi, J., Biehl, J., Ziebart, B., Campbell, R.H., Bailey, B.: Towards a pervasive computing benchmark. In: Pervasive Computing and Communications Workshops, PerCom (2005)Google Scholar
  16. 16.
    Riekki, J., Isomursu, P., Isomursu, M.: Evaluating the calmness of ubiquitous applications. In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 105–119. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Shala, U., Rodriguez, A.: Indoor Positioning Using Sensor-Fusion in Android Devices. M.Sc. Thesis. School of Health and Society, Department Computer Science, Kristianstad University, Kristianstad, Sweden, September 2011Google Scholar
  18. 18.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rainara M. Carvalho
    • 1
  • Ismayle S. Santos
    • 1
  • Ricardo G. Meira
    • 1
  • Paulo A. Aguilar
    • 1
  • Rossana M. C. Andrade
    • 1
  1. 1.Group of Computer Networks, Software Engineering and Systems (GREat), Department of Computer ScienceFederal University of CearáFortalezaBrazil

Personalised recommendations