Clinical Islet Isolation

  • Wayne J. Hawthorne
  • Lindy Williams
  • Yi Vee Chew
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 938)

Abstract

The overarching success of islet transplantation relies on the success in the laboratory to isolate the islets. This chapter focuses on the processes of human islet cell isolation and the ways to optimally provide islet cells for transplantation. The major improvements in regards to the choice of enzyme type, way the digested pancreas tissue is handled to best separate islets from the acinar and surrounding tissues, the various methods of purification of the islets, their subsequent culture and quality assurance to improve outcomes to culminate in safe and effective islet transplantation will be discussed. After decades of improvements, islet cell isolation and transplantation now clearly offer a safe, effective and feasible therapeutic treatment option for an increasing number of patients suffering from type 1 diabetes specifically for those with severe hypoglycaemic unawareness.

Keywords

Diabetes Insulin Islet Islet cell Islet cell allotransplantation Islet cell autotransplantation Islet cell isolation Islet equivalent (IEQ) Type 1 diabetes (T1D) 

Abbreviations

BMI

Body mass index

BSE

Bovine spongiform encephalopathy

CMRL

Connaught medical research laboratories

IEQ

Islet cell isolation

IEQ/g

Islet equivalent islet equivalents per gram

MTC

Mixed treatment comparison

T1D

Type 1 diabetes

UW

University of Wisconsin solution

References

  1. 1.
    Hameed A, Yu T, Yuen L, Lam V, Ryan B, Allen R, et al. Use of the harmonic scalpel in cold phase recovery of the pancreas for transplantation: the westmead technique. Transpl Int. 2016;29:636–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Bockman DE. Anatomy of the pancreas. In: Go VLW, DiMagno EP, Gardner JD, Lebenthal E, Reber HA, Scheele GA, editors. The pancreas: biology, pathobiology, and disease. New York: Raven; 1993. p. 1–8.Google Scholar
  3. 3.
    Savari O, Zielinski MC, Wang X, Misawa R, Millis JM, Witkowski P, et al. Distinct function of the head region of human pancreas in the pathogenesis of diabetes. Islets. 2013;5(5):226–8.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Ricordi C, Lacy PE, Finke EH, Olack BJ, Scharp DW. Automated method for isolation of human pancreatic islets. Diabetes. 1988;37(4):413–20.PubMedCrossRefGoogle Scholar
  5. 5.
    Kin T, Johnson PR, Shapiro AM, Lakey JR. Factors influencing the collagenase digestion phase of human islet isolation. Transplantation. 2007;83(1):7–12.PubMedCrossRefGoogle Scholar
  6. 6.
    Linetsky E, Bottino R, Lehmann R, Alejandro R, Inverardi L, Ricordi C. Improved human islet isolation using a new enzyme blend, liberase. Diabetes. 1997;46(7):1120–3.PubMedCrossRefGoogle Scholar
  7. 7.
    Barnett MJ, Zhai X, LeGatt DF, Cheng SB, Shapiro AM, Lakey JR. Quantitative assessment of collagenase blends for human islet isolation. Transplantation. 2005;80(6):723–8.PubMedCrossRefGoogle Scholar
  8. 8.
    CITR Research Group. 2007 update on allogeneic islet transplantation from the Collaborative Islet Transplant Registry (CITR). Cell Transplant. 2009;18(7):753–67.CrossRefGoogle Scholar
  9. 9.
    O’Connell PJ, Hawthorne WJ, Holmes-Walker DJ, Nankivell BJ, Gunton JE, Patel AT, et al. Clinical islet transplantation in type 1 diabetes mellitus: results of Australia’s first trial. Med J Aust. 2006;184(5):221–5.PubMedGoogle Scholar
  10. 10.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343(4):230–8.PubMedCrossRefGoogle Scholar
  11. 11.
    ISCT. Risk of Bovine Spongiform Encephalopathy (BSE) in collagenase enzymes 2007. Available from: http://www.celltherapysociety.org/files/PDF/Resources/Risk_BSE_in_Collagenase_Enzymes.pdf.
  12. 12.
    Bucher P, Mathe Z, Bosco D, Andres A, Kurfuerst M, Ramsch-Gunther N, et al. Serva collagenase NB1: a new enzyme preparation for human islet isolation. Transplant Proc. 2004;36(4):1143–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Sabek OM, Cowan P, Fraga DW, Gaber AO. The effect of isolation methods and the use of different enzymes on islet yield and in vivo function. Cell Transplant. 2008;17(7):785–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Brandhorst H, Friberg A, Nilsson B, Andersson HH, Felldin M, Foss A, et al. Large-scale comparison of liberase HI and collagenase NB1 utilized for human islet isolation. Cell Transplant. 2010;19(1):3–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Barton FB, Rickels MR, Alejandro R, Hering BJ, Wease S, Naziruddin B, et al. Improvement in outcomes of clinical islet transplantation: 1999–2010. Diabetes Care. 2012;35(7):1436–45.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    O’Connell PJ, Holmes-Walker DJ, Goodman D, Hawthorne WJ, Loudovaris T, Gunton JE, et al. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2013;13(7):1850–8.CrossRefGoogle Scholar
  17. 17.
    Szot GL, Lee MR, Tavakol MM, Lang J, Dekovic F, Kerlan RK, et al. Successful clinical islet isolation using a GMP-manufactured collagenase and neutral protease. Transplantation. 2009;88(6):753–6.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Caballero-Corbalan J, Brandhorst H, Asif S, Korsgren O, Engelse M, de Koning E, et al. Mammalian tissue-free liberase: a new GMP-graded enzyme blend for human islet isolation. Transplantation. 2010;90(3):332–3.PubMedCrossRefGoogle Scholar
  19. 19.
    O’Gorman D, Kin T, Imes S, Pawlick R, Senior P, Shapiro AM. Comparison of human islet isolation outcomes using a new mammalian tissue-free enzyme versus collagenase NB-1. Transplantation. 2010;90(3):255–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Qi M, Valiente L, McFadden B, Omori K, Bilbao S, Juan J, et al. The choice of enzyme for human pancreas digestion is a critical factor for increasing the success of Islet isolation. Transplant Direct. 2015;1(4).Google Scholar
  21. 21.
    Caballero-Corbalan J, Friberg AS, Brandhorst H, Nilsson B, Andersson HH, Felldin M, et al. Vitacyte collagenase HA: a novel enzyme blend for efficient human islet isolation. Transplantation. 2009;88(12):1400–2.PubMedCrossRefGoogle Scholar
  22. 22.
    Balamurugan AN, Loganathan G, Bellin MD, Wilhelm JJ, Harmon J, Anazawa T, et al. A new enzyme mixture to increase the yield and transplant rate of autologous and allogeneic human islet products. Transplantation. 2012;93(7):693–702.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    O’Gorman D, Kin T, Pawlick R, Imes S, Senior PA, Shapiro AM. Clinical islet isolation outcomes with a highly purified neutral protease for pancreas dissociation. Islets. 2013;5(3):111–5.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rheinheimer J, Ziegelmann PK, Carlessi R, Reck LR, Bauer AC, Leitao CB, et al. Different digestion enzymes used for human pancreatic islet isolation: a mixed treatment comparison (MTC) meta-analysis. Islets. 2014;6(4):e977118.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Shimoda M, Noguchi H, Naziruddin B, Fujita Y, Chujo D, Takita M, et al. Improved method of human islet isolation for young donors. Transplant Proc. 2010;42(6):2024–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Lakey JR, Warnock GL, Shapiro AM, Korbutt GS, Ao Z, Kneteman NM, et al. Intraductal collagenase delivery into the human pancreas using syringe loading or controlled perfusion. Cell Transplant. 1999;8(3):285–92.PubMedGoogle Scholar
  27. 27.
    Qi M, Barbaro B, Wang S, Wang Y, Hansen M, Oberholzer J. Human pancreatic islet isolation: part I: digestion and collection of pancreatic tissue. J Vis Exp. 2009;27:1125.PubMedGoogle Scholar
  28. 28.
    Hopcroft DW, Mason DR, Scott RS. Structure-function relationships in pancreatic islets: support for intraislet modulation of insulin secretion. Endocrinology. 1985;117(5):2073–80.PubMedCrossRefGoogle Scholar
  29. 29.
    Jaques F, Jousset H, Tomas A, Prost AL, Wollheim CB, Irminger JC, et al. Dual effect of cell-cell contact disruption on cytosolic calcium and insulin secretion. Endocrinology. 2008;149(5):2494–505.PubMedCrossRefGoogle Scholar
  30. 30.
    Striegel DA, Hara M, Periwal V. The beta cell in its cluster: stochastic graphs of beta cell connectivity in the Islets of Langerhans. PLoS Comput Biol. 2015;11(8):e1004423.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Cross SE, Hughes SJ, Clark A, Gray DW, Johnson PR. Collagenase does not persist in human islets following isolation. Cell Transplant. 2012;21(11):2531–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Cross SE, Hughes SJ, Partridge CJ, Clark A, Gray DW, Johnson PR. Collagenase penetrates human pancreatic islets following standard intraductal administration. Transplantation. 2008;86(7):907–11.PubMedCrossRefGoogle Scholar
  33. 33.
    Matsumoto S, Noguchi H, Naziruddin B, Onaca N, Jackson A, Hatanaka N, Okitsu T, Kobayashi N, Klintmalm G, Levy M. Improvement of pancreatic islet cell isolation for transplantation. Proc (Baylor Univ Med Cent). 2007;20(4):357–62.Google Scholar
  34. 34.
    Qi M, Barbaro B, Wang S, Wang Y, Hansen M, Oberholzer J. Human pancreatic islet isolation: part II: purification and culture of human islets. J Vis Exp: JoVE. 2009(27).Google Scholar
  35. 35.
    Robertson GS, Chadwick D, Thirdborough S, Swift S, Davies J, James R, et al. Human islet isolation – a prospective randomized comparison of pancreatic vascular perfusion with hyperosmolar citrate or University of Wisconsin solution. Transplantation. 1993;56(3):550–3.PubMedCrossRefGoogle Scholar
  36. 36.
    Chadwick DR, Robertson GS, Contractor HH, Rose S, Johnson PR, James RF, et al. Storage of pancreatic digest before islet purification. The influence of colloids and the sodium to potassium ratio in University of Wisconsin-based preservation solutions. Transplantation. 1994;58(1):99–104.PubMedCrossRefGoogle Scholar
  37. 37.
    Hering BJ, Muench KP, Schelz J, Amelang D, Heitfeld M, Bretzel RG, et al. The evaluation of neutral density separation utilizing Ficoll-sodium diatrizoate and Nycodenz and centrifugal elutriation in the purification of bovine and canine islet preparations. Horm Metab Res Suppl. 1990;25:57–63.PubMedGoogle Scholar
  38. 38.
    Jindal RM, McShane P, Gray DW, Morris PJ. Isolation and purification of pancreatic islets by fluorescence activated islet sorter. Transplant Proc. 1994;26(2):653.PubMedGoogle Scholar
  39. 39.
    Lakey JRCT, Zieger MA. A prospective comparison of discontinuous EuroFicoll and EuroDextran gradients for islet purification. Cell Transplant. 1998;7(5):479–87.PubMedCrossRefGoogle Scholar
  40. 40.
    Weide LG, Damon-Burke M, Warkentin PI. Semiclosed system for human and porcine islet isolation using the COBE 2991 cell processor with the triple-bag processing sets. Transplant Proc. 1994;26(2):608–9.PubMedGoogle Scholar
  41. 41.
    Adewola A, Mage R, Hansen M, Barbaro B, Mendoza-Elias J, Harvat T, et al. Comparing cooling systems for the COBE 2991 cell separator used in the purification of human pancreatic islets of Langerhans. Cryo Lett. 2010;31(4):310–7.Google Scholar
  42. 42.
    Eckhard M, Brandhorst D, Winter D, Jaeger C, Jahr H, Bretzel RG, et al. The role of current product release criteria for identification of human islet preparations suitable for clinical transplantation. Transplant Proc. 2004;36(5):1528–31.PubMedCrossRefGoogle Scholar
  43. 43.
    Friberg AS, Stahle M, Brandhorst H, Korsgren O, Brandhorst D. Human islet separation utilizing a closed automated purification system. Cell Transplant. 2008;17(12):1305–13.PubMedCrossRefGoogle Scholar
  44. 44.
    Matsumoto S, Takita M, Chaussabel D, Noguchi H, Shimoda M, Sugimoto K, et al. Improving efficacy of clinical islet transplantation with iodixanol-based islet purification, thymoglobulin induction, and blockage of IL-1beta and TNF-alpha. Cell Transplant. 2011;20(10):1641–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Miki A, Ricordi C, Yamamoto T, Mita A, Barker S, Khan A, et al. Effect of human islet rescue gradient purification on islet yield and fractional Beta cell viability. Transplant Proc. 2008;40(2):360–1.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Noguchi H, Ikemoto T, Naziruddin B, Jackson A, Shimoda M, Fujita Y, et al. Iodixanol-controlled density gradient during islet purification improves recovery rate in human islet isolation. Transplantation. 2009;87(11):1629–35.PubMedCrossRefGoogle Scholar
  47. 47.
    Shimoda M, Itoh T, Sugimoto K, Takita M, Chujo D, Iwahashi S, et al. An effective method to release human islets from surrounding acinar cells with agitation in high osmolality solution. Transplant Proc. 2011;43(9):3161–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Eckhard M, Brandhorst D, Brandhorst H, Brendel MD, Bretzel RG. Optimization in osmolality and range of density of a continuous ficoll-sodium-diatrizoate gradient for isopycnic purification of isolated human islets. Transplant Proc. 2004;36(9):2849–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Mita A, Ricordi C, Messinger S, Miki A, Misawa R, Barker S, et al. Antiproinflammatory effects of iodixanol (OptiPrep)-based density gradient purification on human islet preparations. Cell Transplant. 2010;19(12):1537–46.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Vargas F, Vives-Pi M, Somoza N, Alcalde L, Armengol P, Martí M, Serradell L, Costa M, Fernandez-Llamazares J, Sanmartí A, Pujol-Borrell R. Advantages of using a cell separator and metrizamide gradients for human islet purification. Transplantation. 1996;61(11):1562–6.Google Scholar
  51. 51.
    Latif ZA, Noel J, Alejandro R. A simple method of staining fresh and cultured islets. Transplantation. 1988;45(4):827–30.PubMedCrossRefGoogle Scholar
  52. 52.
    Ricordi C, Gray DW, Hering BJ, Kaufman DB, Warnock GL, Kneteman NM, et al. Islet isolation assessment in man and large animals. Acta Diabetol Lat. 1990;27(3):185–95.PubMedCrossRefGoogle Scholar
  53. 53.
    Shapiro AM, Ricordi C, Hering BJ, Auchincloss H, Lindblad R, Robertson RP, et al. International trial of the Edmonton protocol for islet transplantation. N Engl J Med. 2006;355(13):1318–30.PubMedCrossRefGoogle Scholar
  54. 54.
    Froud T, Ricordi C, Baidal DA, Hafiz MM, Ponte G, Cure P, et al. Islet transplantation in type 1 diabetes mellitus using cultured islets and steroid-free immunosuppression: Miami experience. Am J Transplant. 2005;5(8):2037–46.PubMedCrossRefGoogle Scholar
  55. 55.
    Murdoch TB, McGhee-Wilson D, Shapiro AM, Lakey JR. Methods of human islet culture for transplantation. Cell Transplant. 2004;13(6):605–17.PubMedCrossRefGoogle Scholar
  56. 56.
    Kin T, Senior P, O’Gorman D, Richer B, Salam A, Shapiro AM. Risk factors for islet loss during culture prior to transplantation. Transpl Int. 2008;21(11):1029–35.PubMedGoogle Scholar
  57. 57.
    Hering BJ, Kandaswamy R, Harmon JV, Ansite JD, Clemmings SM, Sakai T, et al. Transplantation of cultured islets from two-layer preserved pancreases in type 1 diabetes with anti-CD3 antibody. Am J Transplant. 2004;4(3):390–401.PubMedCrossRefGoogle Scholar
  58. 58.
    Holmes MA, Clayton HA, Chadwick DR, Bell PR, London NJ, James RF. Functional studies of rat, porcine, and human pancreatic islets cultured in ten commercially available media. Transplantation. 1995;60(8):854–60.PubMedCrossRefGoogle Scholar
  59. 59.
    Clayton HA, London NJ. Survival and function of islets during culture. Cell Transplant. 1996;5(1):1–12. discussion 3-7, 9.PubMedCrossRefGoogle Scholar
  60. 60.
    Brandhorst D, Brandhorst H, Hering BJ, Bretzel RG. Long-term survival, morphology and in vitro function of isolated pig islets under different culture conditions. Transplantation. 1999;67(12):1533–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Fraga DW, Sabek O, Hathaway DK, Gaber AO. A comparison of media supplement methods for the extended culture of human islet tissue. Transplantation. 1998;65(8):1060–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Ilieva A, Yuan S, Wang RN, Agapitos D, Hill DJ, Rosenberg L. Pancreatic islet cell survival following islet isolation: the role of cellular interactions in the pancreas. J Endocrinol. 1999;161(3):357–64.PubMedCrossRefGoogle Scholar
  63. 63.
    Wang RN, Rosenberg L. Maintenance of beta-cell function and survival following islet isolation requires re-establishment of the islet-matrix relationship. J Endocrinol. 1999;163(2):181–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Pileggi A, Ricordi C, Alessiani M, Inverardi L. Factors influencing Islet of Langerhans graft function and monitoring. Clin Chim Acta Int J Clin Chem. 2001;310(1):3–16.CrossRefGoogle Scholar
  65. 65.
    Nagata NA, Inoue K, Tabata Y. Co-culture of extracellular matrix suppresses the cell death of rat pancreatic islets. J Biomater Sci Polym Ed. 2002;13(5):579–90.PubMedCrossRefGoogle Scholar
  66. 66.
    Noguchi H, Naziruddin B, Jackson A, Shimoda M, Ikemoto T, Fujita Y, et al. Fresh islets are more effective for islet transplantation than cultured islets. Cell Transplant. 2012;21(2–3):517–23.PubMedCrossRefGoogle Scholar
  67. 67.
    King A, Lock J, Xu G, Bonner-Weir S, Weir GC. Islet transplantation outcomes in mice are better with fresh islets and exendin-4 treatment. Diabetologia. 2005;48(10):2074–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Olsson R, Carlsson PO. Better vascular engraftment and function in pancreatic islets transplanted without prior culture. Diabetologia. 2005;48(3):469–76.PubMedCrossRefGoogle Scholar
  69. 69.
    Ichii H, Inverardi L, Pileggi A, Molano RD, Cabrera O, Caicedo A, et al. A novel method for the assessment of cellular composition and beta-cell viability in human islet preparations. Am J Transplant. 2005;5(7):1635–45.PubMedCrossRefGoogle Scholar
  70. 70.
    Ricordi C. Islet transplantation: a brave new world. Diabetes. 2003;52(7):1595–603.PubMedCrossRefGoogle Scholar
  71. 71.
    Kedinger M, Haffen K, Grenier J, Eloy R. In vitro culture reduces immunogenicity of pancreatic endocrine islets. Nature. 1977;270(5639):736–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Ricordi C, Lacy PE, Sterbenz K, Davie JM. Low-temperature culture of human islets or in vivo treatment with L3T4 antibody produces a marked prolongation of islet human-to-mouse xenograft survival. Proc Natl Acad Sci U S A. 1987;84(22):8080–4.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Stein E, Mullen Y, Benhamou PY, Watt PC, Hober C, Watanabe Y, et al. Reduction in immunogenicity of human islets by 24 degrees C culture. Transplant Proc. 1994;26(2):755.PubMedGoogle Scholar
  74. 74.
    Andersson A, Borg H, Groth CG, Gunnarsson R, Hellerstrom C, Lundgren G, et al. Survival of isolated human islets of Langerhans maintained in tissue culture. J Clin Invest. 1976;57(5):1295–301.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Rijkelijkhuizen JK, van der Burg MP, Tons A, Terpstra OT, Bouwman E. Pretransplant culture selects for high-quality porcine islets. Pancreas. 2006;32(4):403–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Jimenez-Vera E, Davies S, Phillips P, O’Connell PJ, Hawthorne WJ. Long-term cultured neonatal islet cell clusters demonstrate better outcomes for reversal of diabetes: in vivo and molecular profiles. Xenotransplantation. 2015;22(2):114–23.PubMedCrossRefGoogle Scholar
  77. 77.
    Ihm SH, Matsumoto I, Zhang HJ, Ansite JD, Hering BJ. Effect of short-term culture on functional and stress-related parameters in isolated human islets. Transpl Int. 2009;22(2):207–16.PubMedCrossRefGoogle Scholar
  78. 78.
    Brandhorst D, Brandhorst H, Hering BJ, Federlin K, Bretzel RG. Large variability of the intracellular ATP content of human islets isolated from different donors. J Mol Med (Berlin, Germany). 1999;77(1):93–5.CrossRefGoogle Scholar
  79. 79.
    Shapiro AM, Lakey JR, Rajotte RV, Warnock GL, Friedlich MS, Jewell LD, et al. Portal vein thrombosis after transplantation of partially purified pancreatic islets in a combined human liver/islet allograft. Transplantation. 1995;59(7):1060–3.PubMedCrossRefGoogle Scholar
  80. 80.
    Maffi P, Angeli E, Bertuzzi F, Paties C, Socci C, Fedeli C, et al. Minimal focal steatosis of liver after islet transplantation in humans: a long-term study. Cell Transplant. 2005;14(10):727–33.PubMedCrossRefGoogle Scholar
  81. 81.
    Bhargava R, Senior PA, Ackerman TE, Ryan EA, Paty BW, Lakey JR, et al. Prevalence of hepatic steatosis after islet transplantation and its relation to graft function. Diabetes. 2004;53(5):1311–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Maillard E, Juszczak MT, Clark A, Hughes SJ, Gray DR, Johnson PR. Perfluorodecalin-enriched fibrin matrix for human islet culture. Biomaterials. 2011;32(35):9282–9.PubMedCrossRefGoogle Scholar
  83. 83.
    Moberg L, Johansson H, Lukinius A, Berne C, Foss A, Kallen R, et al. Production of tissue factor by pancreatic islet cells as a trigger of detrimental thrombotic reactions in clinical islet transplantation. Lancet (Lond Eng). 2002;360(9350):2039–45.CrossRefGoogle Scholar
  84. 84.
    Stokes RA, Cheng K, Deters N, Lau SM, Hawthorne WJ, O’Connell PJ, et al. Hypoxia-inducible factor-1alpha (HIF-1alpha) potentiates beta-cell survival after islet transplantation of human and mouse islets. Cell Transplant. 2013;22(2):253–66.PubMedCrossRefGoogle Scholar
  85. 85.
    Moore GE, Gerner RE, Franklin HA. Culture of normal human leukocytes. JAMA. 1967;199(8):519–24.PubMedCrossRefGoogle Scholar
  86. 86.
    Eizirik DL, Korbutt GS, Hellerstrom C. Prolonged exposure of human pancreatic islets to high glucose concentrations in vitro impairs the beta-cell function. J Clin Invest. 1992;90(4):1263–8.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Al-Abdullah IH, Camillo R. Improvement of viability and function of pancreatic islets. Google Patents; 2003Google Scholar
  88. 88.
    Kerr-Conte J, Vandewalle B, Moerman E, Lukowiak B, Gmyr V, Arnalsteen L, et al. Upgrading pretransplant human islet culture technology requires human serum combined with media renewal. Transplantation. 2010;89(9):1154–60.PubMedCrossRefGoogle Scholar
  89. 89.
    Kuhtreiber WM, Ho LT, Kamireddy A, Yacoub JA, Scharp DW. Islet isolation from human pancreas with extended cold ischemia time. Transplant Proc. 2010;42(6):2027–31.PubMedCrossRefGoogle Scholar
  90. 90.
    Barnes D, Sato G. Methods for growth of cultured cells in serum-free medium. Anal Biochem. 1980;102(2):255–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Avgoustiniatos ES, Scott 3rd WE, Suszynski TM, Schuurman HJ, Nelson RA, Rozak PR, et al. Supplements in human islet culture: human serum albumin is inferior to fetal bovine serum. Cell Transplant. 2012;21(12):2805–14.PubMedCrossRefGoogle Scholar
  92. 92.
    Lee RH, Carter J, Szot GL, Posselt A, Stock P. Human albumin preserves islet mass and function better than whole serum during pretransplantation islet culture. Transplant Proc. 2008;40(2):384–6.PubMedCrossRefGoogle Scholar
  93. 93.
    Nacher M, Estil Les E, Garcia A, Nadal B, Pairo M, Garcia C, et al. Human serum versus human serum albumin supplementation in human islet pretransplantation culture. In vitro and in vivo assessment. Cell Transplant. 2015.Google Scholar
  94. 94.
    Brigelius-Flohe R, Banning A, Schnurr K. Selenium-dependent enzymes in endothelial cell function. Antioxid Redox Signal. 2003;5(2):205–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Gaber AO, Fraga DW, Callicutt CS, Gerling IC, Sabek OM, Kotb MY. Improved in vivo pancreatic islet function after prolonged in vitro islet culture. Transplantation. 2001;72(11):1730–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Bradley B, Prowse SJ, Bauling P, Lafferty KJ. Desferrioxamine treatment prevents chronic islet allograft damage. Diabetes. 1986;35(5):550–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Nomikos IN, Prowse SJ, Carotenuto P, Lafferty KJ. Combined treatment with nicotinamide and desferrioxamine prevents islet allograft destruction in NOD mice. Diabetes. 1986;35(11):1302–4.PubMedCrossRefGoogle Scholar
  98. 98.
    Mendola J, Wright Jr JR, Lacy PE. Oxygen free-radical scavengers and immune destruction of murine islets in allograft rejection and multiple low-dose streptozocin-induced insulitis. Diabetes. 1989;38(3):379–85.PubMedCrossRefGoogle Scholar
  99. 99.
    Eizirik DL, Sandler S, Welsh N, Bendtzen K, Hellerstrom C. Nicotinamide decreases nitric oxide production and partially protects human pancreatic islets against the suppressive effects of combinations of cytokines. Autoimmunity. 1994;19(3):193–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Langlois A, Bietiger W, Mandes K, Maillard E, Belcourt A, Pinget M, et al. Overexpression of vascular endothelial growth factor in vitro using deferoxamine: a new drug to increase islet vascularization during transplantation. Transplant Proc. 2008;40(2):473–6.PubMedCrossRefGoogle Scholar
  101. 101.
    Burkart V, Gross-Eick A, Bellmann K, Radons J, Kolb H. Suppression of nitric oxide toxicity in islet cells by alpha-tocopherol. FEBS Lett. 1995;364(3):259–63.PubMedCrossRefGoogle Scholar
  102. 102.
    Tajiri Y, Grill VE. Interactions between vitamin E and glucose on B-cell functions in the rat: an in vivo and in vitro study. Pancreas. 1999;18(3):274–81.PubMedCrossRefGoogle Scholar
  103. 103.
    Wang L, Zhao Y, Gui B, Fu R, Ma F, Yu J, et al. Acute stimulation of glucagon secretion by linoleic acid results from GPR40 activation and [Ca2+]i increase in pancreatic islet {alpha}-cells. J Endocrinol. 2011;210(2):173–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Schnell S, Schaefer M, Schofl C. Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from beta-cells through activation of GPR40. Mol Cell Endocrinol. 2007;263(1–2):173–80.PubMedCrossRefGoogle Scholar
  105. 105.
    Wolf BA, Pasquale SM, Turk J. Free fatty acid accumulation in secretagogue-stimulated pancreatic islets and effects of arachidonate on depolarization-induced insulin secretion. Biochemistry. 1991;30(26):6372–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Turk J, Gross RW, Ramanadham S. Amplification of insulin secretion by lipid messengers. Diabetes. 1993;42(3):367–74.PubMedCrossRefGoogle Scholar
  107. 107.
    Dixon G, Nolan J, McClenaghan NH, Flatt PR, Newsholme P. Arachidonic acid, palmitic acid and glucose are important for the modulation of clonal pancreatic beta-cell insulin secretion, growth and functional integrity. Clin Sci (Lond Engl 1979). 2004;106(2):191–9.CrossRefGoogle Scholar
  108. 108.
    Zhou YP, Grill V. Long term exposure to fatty acids and ketones inhibits B-cell functions in human pancreatic islets of Langerhans. J Clin Endocrinol Metab. 1995;80(5):1584–90.PubMedGoogle Scholar
  109. 109.
    Lucena CF, Roma LP, Graciano MF, Veras K, Simoes D, Curi R, et al. Omega-3 supplementation improves pancreatic islet redox status: in vivo and in vitro studies. Pancreas. 2015;44(2):287–95.PubMedCrossRefGoogle Scholar
  110. 110.
    Bottino R, Inverardi L, Valente U, Ricordi C. Serum-free medium and pyruvate improve survival and glucose responsiveness of islet beta cells in culture. Transplant Proc. 1997;29(4):1978.PubMedCrossRefGoogle Scholar
  111. 111.
    Ishihara H, Maechler P, Gjinovci A, Herrera PL, Wollheim CB. Islet beta-cell secretion determines glucagon release from neighbouring alpha-cells. Nat Cell Biol. 2003;5(4):330–5.PubMedCrossRefGoogle Scholar
  112. 112.
    Adams MJ, Blundell TL, Dodson EJ, Dodson GG, Vijayan M, Baker EN, et al. Structure of Rhombohedral 2 Zinc Insulin Crystals. Nature. 1969;224(5218):491–5.CrossRefGoogle Scholar
  113. 113.
    Dodson G, Steiner D. The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol. 1998;8(2):189–94.PubMedCrossRefGoogle Scholar
  114. 114.
    Duprez J, Roma LP, Close AF, Jonas JC. Protective antioxidant and antiapoptotic effects of ZnCl2 in rat pancreatic islets cultured in low and high glucose concentrations. PLoS One. 2012;7(10):e46831.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hoftiezer V, Berggren PO, Hellman B. Effects of zinc during culture of an insulin-producing rat cell line (RINm5F). Cancer Lett. 1985;29(1):15–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Amores-Sanchez MI, Medina MA. Glutamine, as a precursor of glutathione, and oxidative stress. Mol Genet Metab. 1999;67(2):100–5.PubMedCrossRefGoogle Scholar
  117. 117.
    Wischmeyer PE, Musch MW, Madonna MB, Thisted R, Chang EB. Glutamine protects intestinal epithelial cells: role of inducible HSP70. Am J Physiol. 1997;272(4 Pt 1):G879–84.PubMedGoogle Scholar
  118. 118.
    Brandhorst H, Duan Y, Iken M, Bretzel RG, Brandhorst D. Effect of stable glutamine compounds on porcine islet culture. Transplant Proc. 2005;37(8):3519–20.PubMedCrossRefGoogle Scholar
  119. 119.
    Avila JG, Tsujimura T, Oberholzer J, Churchill T, Salehi P, Shapiro AM, et al. Improvement of pancreatic islet isolation outcomes using glutamine perfusion during isolation procedure. Cell Transplant. 2003;12(8):877–81.PubMedCrossRefGoogle Scholar
  120. 120.
    Avila J, Barbaro B, Gangemi A, Romagnoli T, Kuechle J, Hansen M, et al. Intra-ductal glutamine administration reduces oxidative injury during human pancreatic islet isolation. Am J Transplant. 2005;5(12):2830–7.PubMedCrossRefGoogle Scholar
  121. 121.
    Jang HJ, Kwak JH, Cho EY, We YM, Lee YH, Kim SC, et al. Glutamine induces heat-shock protein-70 and glutathione expression and attenuates ischemic damage in rat islets. Transplant Proc. 2008;40(8):2581–4.PubMedCrossRefGoogle Scholar
  122. 122.
    Modi H, Cornu M, Thorens B. Glutamine stimulates biosynthesis and secretion of insulin-like growth factor 2 (IGF2), an autocrine regulator of beta cell mass and function. J Biol Chem. 2014;289(46):31972–82.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Balamurugan AN, Naziruddin B, Lockridge A, Tiwari M, Loganathan G, Takita M, et al. Islet product characteristics and factors related to successful human islet transplantation from the Collaborative Islet Transplant Registry (CITR) 1999–2010. Am J Transplant. 2014;14(11):2595–606.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Falqui L, Finke EH, Carel JC, Scharp DW, Lacy PE. Marked prolongation of human islet xenograft survival (human-to-mouse) by low-temperature culture and temporary immunosuppression with human and mouse anti-lymphocyte sera. Transplantation. 1991;51(6):1322–4.PubMedCrossRefGoogle Scholar
  125. 125.
    Scharp DW, Lacy PE, Finke E, Olack B. Low-temperature culture of human islets isolated by the distention method and purified with ficoll or percoll gradients. Surgery. 1987;102(5):869–79.PubMedGoogle Scholar
  126. 126.
    Ono J, Lacy PE, Michael HE, Greider MH. Studies of the functional and morphologic status of islets maintained at 24 C for four weeks in vitro. Am J Pathol. 1979;97(3):489–503.PubMedPubMedCentralGoogle Scholar
  127. 127.
    de Graaff MP, Wolters GH, van Schilfgaarde R. Endothelial cells in pancreatic islets and the effect of culture. Transplant Proc. 1994;26(3):1171.PubMedGoogle Scholar
  128. 128.
    Ilieva A, Yuan S, Wang R, Duguid WP, Rosenberg L. The structural integrity of the islet in vitro: the effect of incubation temperature. Pancreas. 1999;19(3):297–303.PubMedCrossRefGoogle Scholar
  129. 129.
    Escolar JC, Hoo-Paris R, Castex C, Sutter BC. Effect of low temperatures on glucose-induced insulin secretion and glucose metabolism in isolated pancreatic islets of the rat. J Endocrinol. 1990;125(1):45–51.PubMedCrossRefGoogle Scholar
  130. 130.
    Mueller KR, Martins KV, Murtaugh MP, Schuurman HJ, Papas KK. Manufacturing porcine islets: culture at 22 degrees C has no advantage above culture at 37 degrees C: a gene expression evaluation. Xenotransplantation. 2013;20(6):418–28.PubMedCrossRefGoogle Scholar
  131. 131.
    Brandhorst D, Brandhorst H, Mullooly N, Acreman S, Johnson PR. High seeding density induces local hypoxia and triggers a proinflammatory response in isolated human Islets. Cell Transplant. 2015.Google Scholar
  132. 132.
    Avgoustiniatos ES, Colton CK. Effect of external oxygen mass transfer resistances on viability of immunoisolated tissue. Ann N Y Acad Sci. 1997;831:145–67.PubMedCrossRefGoogle Scholar
  133. 133.
    Lau J, Henriksnas J, Svensson J, Carlsson PO. Oxygenation of islets and its role in transplantation. Curr Opin Organ Transplant. 2009;14(6):688–93.PubMedCrossRefGoogle Scholar
  134. 134.
    Bentsi-Barnes K, Kandeel F, Al-Abdullah IH. Evaluation of human islet-specific functional quality cultured on different gas-permeable membranes. Transplant Proc. 2008;40(2):401–2.PubMedCrossRefGoogle Scholar
  135. 135.
    Papas KK, Avgoustiniatos ES, Tempelman LA, Weir GC, Colton CK, Pisania A, et al. High-density culture of human islets on top of silicone rubber membranes. Transplant Proc. 2005;37(8):3412–4.PubMedCrossRefGoogle Scholar
  136. 136.
    Goto M, Yoshikawa Y, Matsuo K, Shirasu A, Ogawa N, Takahashi H, et al. Optimization of a prominent oxygen-permeable device for pancreatic islets. Transplant Proc. 2008;40(2):411–2.PubMedCrossRefGoogle Scholar
  137. 137.
    Murray HE, Paget MB, Downing R. Preservation of glucose responsiveness in human islets maintained in a rotational cell culture system. Mol Cell Endocrinol. 2005;238(1–2):39–49.PubMedCrossRefGoogle Scholar
  138. 138.
    Linetsky E, Ricordi C. Regulatory challenges in manufacturing of pancreatic islets. Transplant Proc. 2008;40(2):424–6.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    U.S. Department of Health and Human Services FDA. Guidance for industry: considerations for allogeneic pancreatic Islet cell products 2009 [updated 15/09/14. Available from: http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/ucm182440.htm.
  140. 140.
    Papas KK, Suszynski TM, Colton CK. Islet assessment for transplantation. Curr Opin Organ Transplant. 2009;14(6):674–82.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Bennet W, Groth CG, Larsson R, Nilsson B, Korsgren O. Isolated human islets trigger an instant blood mediated inflammatory reaction: implications for intraportal islet transplantation as a treatment for patients with type 1 diabetes. Ups J Med Sci. 2000;105(2):125–33.PubMedCrossRefGoogle Scholar
  142. 142.
    Bennet W, Sundberg B, Groth CG, Brendel MD, Brandhorst D, Brandhorst H, et al. Incompatibility between human blood and isolated islets of Langerhans: a finding with implications for clinical intraportal islet transplantation? Diabetes. 1999;48(10):1907–14.PubMedCrossRefGoogle Scholar
  143. 143.
    Davalli AM, Scaglia L, Zangen DH, Hollister J, Bonner-Weir S, Weir GC. Vulnerability of islets in the immediate posttransplantation period. Dynamic changes in structure and function. Diabetes. 1996;45(9):1161–7.PubMedCrossRefGoogle Scholar
  144. 144.
    Mellert J, Hering BJ, Liu X, Brandhorst D, Brandhorst H, Pfeffer F, et al. Critical islet mass for successful porcine islet autotransplantation. J Mol Med (Berlin Germany). 1999;77(1):126–9.CrossRefGoogle Scholar
  145. 145.
    Ryan EA, Lakey JR, Rajotte RV, Korbutt GS, Kin T, Imes S, et al. Clinical outcomes and insulin secretion after islet transplantation with the Edmonton protocol. Diabetes. 2001;50(4):710–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Davalli AM, Ogawa Y, Scaglia L, Wu YJ, Hollister J, Bonner-Weir S, et al. Function, mass, and replication of porcine and rat islets transplanted into diabetic nude mice. Diabetes. 1995;44(1):104–11.PubMedCrossRefGoogle Scholar
  147. 147.
    Pisania A, Weir GC, O’Neil JJ, Omer A, Tchipashvili V, Lei J, et al. Quantitative analysis of cell composition and purity of human pancreatic islet preparations. Lab Invest J Tech Methods Pathol. 2010;90(11):1661–75.CrossRefGoogle Scholar
  148. 148.
    Keymeulen B, Gillard P, Mathieu C, Movahedi B, Maleux G, Delvaux G, et al. Correlation between beta cell mass and glycemic control in type 1 diabetic recipients of islet cell graft. Proc Natl Acad Sci U S A. 2006;103(46):17444–9.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Keymeulen B, Ling Z, Gorus FK, Delvaux G, Bouwens L, Grupping A, et al. Implantation of standardized beta-cell grafts in a liver segment of IDDM patients: graft and recipients characteristics in two cases of insulin-independence under maintenance immunosuppression for prior kidney graft. Diabetologia. 1998;41(4):452–9.PubMedCrossRefGoogle Scholar
  150. 150.
    Buchwald P, Wang X, Khan A, Bernal A, Fraker C, Inverardi L, et al. Quantitative assessment of islet cell products: estimating the accuracy of the existing protocol and accounting for islet size distribution. Cell Transplant. 2009;18(10):1223–35.PubMedCrossRefGoogle Scholar
  151. 151.
    Huang HH, Ramachandran K, Stehno-Bittel L. A replacement for islet equivalents with improved reliability and validity. Acta Diabetol. 2013;50(5):687–96.PubMedCrossRefGoogle Scholar
  152. 152.
    Ramachandran K, Huang HH, Stehno-Bittel L. A simple method to replace islet equivalents for volume quantification of human islets. Cell Transplant. 2015;24(7):1183–94.PubMedCrossRefGoogle Scholar
  153. 153.
    Lehmann R, Zuellig RA, Kugelmeier P, Baenninger PB, Moritz W, Perren A, et al. Superiority of small islets in human islet transplantation. Diabetes. 2007;56(3):594–603.PubMedCrossRefGoogle Scholar
  154. 154.
    MacGregor RR, Williams SJ, Tong PY, Kover K, Moore WV, Stehno-Bittel L. Small rat islets are superior to large islets in in vitro function and in transplantation outcomes. Am J Physiol Endocrinol Metab. 2006;290(5):E771–9.PubMedCrossRefGoogle Scholar
  155. 155.
    Loganathan G, Graham ML, Radosevich DM, Soltani SM, Tiwari M, Anazawa T, et al. Factors affecting transplant outcomes in diabetic nude mice receiving human, porcine, and nonhuman primate islets: analysis of 335 transplantations. Transplantation. 2013;95(12):1439–47.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Migliavacca B, Nano R, Antonioli B, Marzorati S, Davalli AM, Di Carlo V, et al. Identification of in vitro parameters predictive of graft function: a study in an animal model of islet transplantation. Transplant Proc. 2004;36(3):612–3.PubMedCrossRefGoogle Scholar
  157. 157.
    Kitzmann JP, Karatzas T, Mueller KR, Avgoustiniatos ES, Gruessner AC, Balamurugan AN, et al. Islet preparation purity is overestimated, and less pure fractions have lower post-culture viability before clinical allotransplantation. Transplant Proc. 2014;46(6):1953–5.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Gray DW, Sutton R, McShane P, Peters M, Morris PJ. Exocrine contamination impairs implantation of pancreatic islets transplanted beneath the kidney capsule. J Surg Res. 1988;45(5):432–42.PubMedCrossRefGoogle Scholar
  159. 159.
    London NJ, Contractor H, Lake SP, Aucott GC, Bell PR, James RF. A microfluorometric viability assay for isolated human and rat islets of Langerhans. Diabetes Res (Edinburgh, Scotland). 1989;12(3):141–9.Google Scholar
  160. 160.
    London NJ, Contractor H, Lake SP, Aucott GC, Bell PR, James RF. A fluorometric viability assay for single human and rat islets. Horm Metab Res Suppl Ser. 1990;25:82–7.Google Scholar
  161. 161.
    Kramer DN, Guilbault GG. A substrate for the fluorometric determination of lipase activity. Anal Chem. 1963;35(4):588–9.CrossRefGoogle Scholar
  162. 162.
    Barnett MJ, McGhee-Wilson D, Shapiro AM, Lakey JR. Variation in human islet viability based on different membrane integrity stains. Cell Transplant. 2004;13(5):481–8.PubMedCrossRefGoogle Scholar
  163. 163.
    Boyd V, Cholewa OM, Papas KK. Limitations in the use of Fluorescein Diacetate/Propidium Iodide (FDA/PI) and cell permeable nucleic acid stains for viability measurements of isolated islets of langerhans. Curr Trends Biotechnol Pharm. 2008;2(2):66–84.PubMedPubMedCentralGoogle Scholar
  164. 164.
    Lukowiak B, Vandewalle B, Riachy R, Kerr-Conte J, Gmyr V, Belaich S, et al. Identification and purification of functional human beta-cells by a new specific zinc-fluorescent probe. J Histochem Cytochem. 2001;49(4):519–28.PubMedCrossRefGoogle Scholar
  165. 165.
    Scaduto Jr RC, Grotyohann LW. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J. 1999;76(1 Pt 1):469–77.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Goto M, Holgersson J, Kumagai-Braesch M, Korsgren O. The ADP/ATP ratio: a novel predictive assay for quality assessment of isolated pancreatic islets. Am J Transplant. 2006;6(10):2483–7.PubMedCrossRefGoogle Scholar
  167. 167.
    Taylor GD, Kirkland T, Lakey J, Rajotte R, Warnock GL. Bacteremia due to transplantation of contaminated cryopreserved pancreatic islets. Cell Transplant. 1994;3(1):103–6.PubMedGoogle Scholar
  168. 168.
    Berney T, Molano RD, Cattan P, Pileggi A, Vizzardelli C, Oliver R, et al. Endotoxin-mediated delayed islet graft function is associated with increased intra-islet cytokine production and islet cell apoptosis. Transplantation. 2001;71(1):125–32.PubMedCrossRefGoogle Scholar
  169. 169.
    Vargas F, Vives-Pi M, Somoza N, Armengol P, Alcalde L, Marti M, et al. Endotoxin contamination may be responsible for the unexplained failure of human pancreatic islet transplantation. Transplantation. 1998;65(5):722–7.PubMedCrossRefGoogle Scholar
  170. 170.
    Vives-Pi M, Somoza N, FernÁNdez-Alvarez J, Vargas F, Caro P, Alba A, et al. Evidence of expression of endotoxin receptors CD14, toll-like receptors TLR4 and TLR2 and associated molecule MD-2 and of sensitivity to endotoxin (LPS) in islet beta cells. Clin Exp Immunol. 2003;133(2):208–18.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Bucher P, Mathe Z, Bosco D, Oberholzer J, Toso C, Andres A, et al. Microbial surveillance during human pancreatic islet isolation. Transplant Proc. 2004;36(4):1147–8.PubMedCrossRefGoogle Scholar
  172. 172.
    Kin T, Rosichuk S, Shapiro AM, Lakey JR. Detection of microbial contamination during human islet isolation. Cell Transplant. 2007;16(1):9–13.PubMedCrossRefGoogle Scholar
  173. 173.
    Lakey JR, Rajotte RV, Warnock GL. Microbial surveillance of human islet isolation, in vitro culture, and cryopreservation. Clin Invest Med. 1995;18(3):168–76.PubMedGoogle Scholar
  174. 174.
    Scharp DW, Lacy PE, McLear M, Longwith J, Olack B. The bioburden of 590 consecutive human pancreata for islet transplant research. Transplant Proc. 1992;24(3):974–5.PubMedGoogle Scholar
  175. 175.
    Carroll PB, Ricordi C, Fontes P, Rilo HR, Phipps J, Tzakis AG, et al. Microbiologic surveillance as part of human islet transplantation: results of the first 26 patients. Transplant Proc. 1992;24(6):2798–9.PubMedPubMedCentralGoogle Scholar
  176. 176.
    Gala-Lopez B, Kin T, O’Gorman D, Pepper AR, Senior P, Humar A, et al. Microbial contamination of clinical islet transplant preparations is associated with very low risk of infection. Diabetes Technol Ther. 2013;15(4):323–7.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Kim JH, Park SG, Lee HN, Lee YY, Park HS, Kim HI, et al. ATP measurement predicts porcine islet transplantation outcome in nude mice. Transplantation. 2009;87(2):166–9.PubMedCrossRefGoogle Scholar
  178. 178.
    Bradbury DA, Simmons TD, Slater KJ, Crouch SP. Measurement of the ADP:ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. J Immunol Methods. 2000;240(1–2):79–92.PubMedCrossRefGoogle Scholar
  179. 179.
    Ishii S, Saito T, Ise K, Sato Y, Tsutiya T, Kenjo A, et al. Evaluation of energy state of islet independent of size using a newly developed ATP bioluminescence assay. Transplant Proc. 2005;37(8):3499–500.PubMedCrossRefGoogle Scholar
  180. 180.
    Ishii S, Sato Y, Terashima M, Saito T, Suzuki S, Murakami S, et al. A novel method for determination of ATP, ADP, and AMP contents of a single pancreatic islet before transplantation. Transplant Proc. 2004;36(4):1191–3.PubMedCrossRefGoogle Scholar
  181. 181.
    Hellerstrom C. Oxygen consumption of isolated pancreatic islets of mice studied with the cartesian-diver micro-gasometer. Biochem J. 1966;98(1):7c–9c.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Papas KK, Colton CK, Nelson RA, Rozak PR, Avgoustiniatos ES, Scott 3rd WE, et al. Human islet oxygen consumption rate and DNA measurements predict diabetes reversal in nude mice. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2007;7(3):707–13.CrossRefGoogle Scholar
  183. 183.
    Sweet IR, Gilbert M, Jensen R, Sabek O, Fraga DW, Gaber AO, et al. Glucose stimulation of cytochrome C reduction and oxygen consumption as assessment of human islet quality. Transplantation. 2005;80(8):1003–11.PubMedCrossRefGoogle Scholar
  184. 184.
    Fraker C, Timmins MR, Guarino RD, Haaland PD, Ichii H, Molano D, et al. The use of the BD oxygen biosensor system to assess isolated human islets of langerhans: oxygen consumption as a potential measure of islet potency. Cell Transplant. 2006;15(8–9):745–58.PubMedCrossRefGoogle Scholar
  185. 185.
    Papas KK, Bellin MD, Sutherland DE, Suszynski TM, Kitzmann JP, Avgoustiniatos ES, et al. Islet Oxygen Consumption Rate (OCR) dose predicts insulin independence in clinical islet autotransplantation. PLoS One. 2015;10(8):e0134428.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Sweet IR, Gilbert M, Scott S, Todorov I, Jensen R, Nair I, et al. Glucose-stimulated increment in oxygen consumption rate as a standardized test of human islet quality. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2008;8(1):183–92.Google Scholar
  187. 187.
    Sweet IR, Khalil G, Wallen AR, Steedman M, Schenkman KA, Reems JA, et al. Continuous measurement of oxygen consumption by pancreatic islets. Diabetes Technol Ther. 2002;4(5):661–72.PubMedCrossRefGoogle Scholar
  188. 188.
    Pepper AR, Hasilo CP, Melling CW, Mazzuca DM, Vilk G, Zou G, et al. The islet size to oxygen consumption ratio reliably predicts reversal of diabetes posttransplant. Cell Transplant. 2012;21(12):2797–804.PubMedCrossRefGoogle Scholar
  189. 189.
    Papas KK, Colton CK, Qipo A, Wu H, Nelson RA, Hering BJ, et al. Prediction of marginal mass required for successful islet transplantation. J Invest Surg. 2010;23(1):28–34.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Wang W, Upshaw L, Strong DM, Robertson RP, Reems J. Increased oxygen consumption rates in response to high glucose detected by a novel oxygen biosensor system in non-human primate and human islets. J Endocrinol. 2005;185(3):445–55.PubMedCrossRefGoogle Scholar
  191. 191.
    Wikstrom JD, Sereda SB, Stiles L, Elorza A, Allister EM, Neilson A, et al. A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS One. 2012;7(5):e33023.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Ricordi C. Quantitative and qualitative standards for islet isolation assessment in humans and large mammals. Pancreas. 1991;6(2):242–4.PubMedCrossRefGoogle Scholar
  193. 193.
    Bertuzzi F, Garancini P, Socci TC, Nano R, Taglietti MV, Santopinto M, et al. Lessons from in vitro perifusion of pancreatic islets isolated from 80 human pancreases. Cell Transplant. 1999;8(6):709–12.PubMedGoogle Scholar
  194. 194.
    Street CN, Lakey JR, Shapiro AM, Imes S, Rajotte RV, Ryan EA, et al. Islet graft assessment in the Edmonton protocol: implications for predicting long-term clinical outcome. Diabetes. 2004;53(12):3107–14.PubMedCrossRefGoogle Scholar
  195. 195.
    Ricordi C, Lacy PE, Scharp DW. Automated islet isolation from human pancreas. Diabetes. 1989;38 Suppl 1:140–2.PubMedCrossRefGoogle Scholar
  196. 196.
    Grant AM, Christie MR, Ashcroft SJ. Insulin release from human pancreatic islets in vitro. Diabetologia. 1980;19(2):114–7.PubMedCrossRefGoogle Scholar
  197. 197.
    Gerling IC, Kotb M, Fraga D, Sabek O, Gaber AO. No correlation between in vitro and in vivo function of human islets. Transplant Proc. 1998;30(2):587–8.PubMedCrossRefGoogle Scholar
  198. 198.
    Kayton NS, Poffenberger G, Henske J, Dai C, Thompson C, Aramandla R, et al. Human islet preparations distributed for research exhibit a variety of insulin-secretory profiles. Am J Physiol Endocrinol Metab. 2015;308(7):E592–602.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Bertuzzi F, Ricordi C. Prediction of clinical outcome in islet allotransplantation. Diabetes Care. 2007;30(2):410–7.PubMedCrossRefGoogle Scholar
  200. 200.
    London NJ, Thirdborough SM, Swift SM, Bell PR, James RF. The diabetic “human reconstituted” severe combined immunodeficient (SCID-hu) mouse: a model for isogeneic, allogeneic, and xenogeneic human islet transplantation. Transplant Proc. 1991;23(1 Pt 1):749.PubMedGoogle Scholar
  201. 201.
    Sabek OM, Fraga DW, Minoru O, McClaren JL, Gaber AO. Assessment of human islet viability using various mouse models. Transplant Proc. 2005;37(8):3415–6.PubMedCrossRefGoogle Scholar
  202. 202.
    Caiazzo R, Gmyr V, Kremer B, Hubert T, Soudan B, Lukowiak B, et al. Quantitative in vivo islet potency assay in normoglycemic nude mice correlates with primary graft function after clinical transplantation. Transplantation. 2008;86(2):360–3.PubMedCrossRefGoogle Scholar
  203. 203.
    Pepper AR, Gall C, Mazzuca DM, Melling CW, White DJ. Diabetic rats and mice are resistant to porcine and human insulin: flawed experimental models for testing islet xenografts. Xenotransplantation. 2009;16(6):502–10.PubMedCrossRefGoogle Scholar
  204. 204.
    Merino JF, Nacher V, Raurell M, Biarnes M, Soler J, Montanya E. Optimal insulin treatment in syngeneic islet transplantation. Cell Transplant. 2000;9(1):11–8.PubMedGoogle Scholar
  205. 205.
    Weber DJ. FDA regulation of allogeneic islets as a biological product. Cell Biochem Biophys. 2004;40(3 Suppl):19–22.PubMedCrossRefGoogle Scholar
  206. 206.
    Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab Syndr Obes Targets Ther. 2014;7:211–23.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wayne J. Hawthorne
    • 1
    • 2
  • Lindy Williams
    • 1
  • Yi Vee Chew
    • 1
  1. 1.National Pancreas and Islet Transplant LaboratoriesThe Westmead Institute for Medical ResearchWestmeadAustralia
  2. 2.Department of Surgery, Westmead Clinical School, Westmead HospitalUniversity of SydneyWestmeadAustralia

Personalised recommendations