Model of Attenuation of Sound Stimuli in Prenatal Music Therapy

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 471)


Studies on the process of acoustic stimulation in prenatal period require to assess the beneficial condition for child development, as well as characteristic sounds which could negatively affect the development of auditory system, brain or even entire body. It can be provided with the simplified model of sound attenuation in the uterus, which can be represented by first order passive low pass filter. On the basis of total harmonic distortion analysis for a single sound, a proposal indicating the sound reduction in the intrauterine environment is formulated. It is hypothesised that the sound stimuli in the uterus is not the same sound as the music in the source.


Music therapy Prenatal development Sound attenuation 



The work has been partially financed by Polish Ministry of Science and Silesian University of Technology statutory financial support for young researchers BKM-508/RAu-3/2016.


  1. 1.
    Abate, M.A.: Fetal exposures to sound and vibroacoustic stimulation. Child. Lit. Educ. 44(4), 326–343 (2013)CrossRefGoogle Scholar
  2. 2.
    Abrams, R., Gerhardt, K., Huang, X., Peters, A., Langford, R.: Musical experiences of the unborn baby. J. Sound Vib. 231(1), 253–258 (2000). Google Scholar
  3. 3.
    Abrams, R.M., Gerhardt, K.J.: The fetus: the acoustic environmental and physiological responses of the fetus. J. Perinatol., 30–35 (2000)Google Scholar
  4. 4.
    Abrams, R.M., Griffiths, S.K., Huang, X., Sain, J., Langford, G., Gerhardt, K.J.: Fetal music perception: the role of sound transmission. Music Percept. 15(3), 307–317 (1998). Google Scholar
  5. 5.
    American Academy of Pediatrics: Committee on Environmental Health: Noise: a hazard for the fetus and newborn. Pediatrics 100(4), 724–727 (1997)CrossRefGoogle Scholar
  6. 6.
    Antonets, V.A., Kazakov, V.V.: On noninvasive assessment of acoustic fields acting on the fetus. Acoust. Phys. 60(3), 342–347 (2014). Google Scholar
  7. 7.
    Barreto, E.D., Morris, B.H., Philbin, M.K., Gray, L.C., Lasky, R.E.: Do former preterm infants remember and respond to neonatal intensive care unit noise? Early Hum. Dev. 82, 703–707 (2006)CrossRefGoogle Scholar
  8. 8.
    Chang, E.F., Merzenich, M.M.: Environmental noise retards auditory cortical development. Science 300(5618), 498–502 (2003). Google Scholar
  9. 9.
    Fisch, L.: Integrated development and maturation of the hearing system; a critical review article. Br. J. Audiol. 17(3), 137–154 (1983). pMID: 6357323
  10. 10.
    Gerhardt, K.J., Abrams, R.M., Oliver, C.C.: Sound environment of the fetal sheep. Am. J. Obstetrics Gynecol. 162(1), 282–287 (1990). Google Scholar
  11. 11.
    Gerhardt, K.J., Abrams, R.M.: Fetal hearing: characterization of the stimulus and response. Semin. Perinatol. 20(1), 11–20 (1996)CrossRefGoogle Scholar
  12. 12.
    Gerhardt, K.J., Abrams, R.M.: Fetal exposures to sound and vibroacoustic stimulation. J. Perinatol.: Off. J. California Perinatal Assoc. 20, 21–30 (2000)Google Scholar
  13. 13.
    Graven, S.N., Browne, J.V.: Auditory development in the fetus and infant. Newborn Infant Nurs. Rev. 8(4), 187–193 (2008). Google Scholar
  14. 14.
    Graven, S.N.: Sound and the developing infant in the NICU: conclusions and recommendations for care. J. Perinatol.: Off. J. California Perinatal Assoc. 20, 88–93 (2000)Google Scholar
  15. 15.
    Krueger, C., Horesh, E., Crossland, B.A.: Safe Sound Exposure in the Fetus and Preterm Infant. JOGNN. J. Obstet. Gynecol. Neonatal Nurs. 41, 166–170 (2012)CrossRefGoogle Scholar
  16. 16.
    Lahav, A.: Questionable sound exposure outside of the womb: frequency analysis of environmental noise in the neonatal intensive care unit. Acta Paediatr. 104(1), 14–19 (2015). Google Scholar
  17. 17.
    Lahav, A., Skoe, E.: An acoustic gap between the NICU and womb: a potential risk for compromised neuroplasticity of the auditory system in preterm infants. Front. Neurosci. 8(December), 1–8 (2014).
  18. 18.
    Lecanuet, J.P., Gautheron, B., Locatelli, A., Schaal, B., Jacquet, A.Y., Busnel, M.C.: What sounds reach fetuses: biological and nonbiological modeling of the transmission of pure tones. Dev. Psychobiol. 33(3), 203–219 (1998)CrossRefGoogle Scholar
  19. 19.
    López-Teijón, M., García-Faura, A., Prats-Galino, A.: Fetal facial expression in response to intravaginal music emission. Ultrasound, 1–8 (2015).
  20. 20.
    Mcmahon, E., Wintermark, P., Lahav, A.: Auditory brain development in premature infants: the importance of early experience. Ann. New York Acad. Sci. 1252, 17–24 (2012)CrossRefGoogle Scholar
  21. 21.
    Richards, D.S., Frentzen, B., Gerhardt, K.J., McCann, M.E.: A.R.: sound levels in the human uterus. Obstetr. Gynecol. 80(2), 186–190 (1992)Google Scholar
  22. 22.
    Yang, Z., Dai, H.M., Chan, N.H., Ma, G.C., Sheng, P.: Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96(4), 041906 (2010). Google Scholar
  23. 23.
    Zumbahlen, H.: Analog filters. In: Zumbahlen, H., et al. (eds.) Linear Circuit Design Handbook, Chap. 8, pp. 581–679. Newnes, Burlington (2008). Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Faculty of Automatic Control, Electronics and Computer ScienceSilesian University of TechnologyGliwicePoland
  2. 2.Faculty of Biomedical Engineering, Department of Informatics and Medical EquipmentSilesian University of TechnologyGliwicePoland
  3. 3.Institute of Anthropology, Wroclaw University of Environmental And Life SciencesWrocławPoland

Personalised recommendations