Preprocessing Methods in Nuclear Magnetic Resonance Spectroscopy

  • Michal Staniszewski
  • Agnieszka Skorupa
  • Lukasz Boguszewicz
  • Maria Sokol
  • Andrzej Polanski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 471)


Magnetic resonance spectroscopy is currently used in chemistry and medicine as a diagnostic tool. Due to many imperfections that are present during measurement the signal has to be corrected by so called preprocessing methods or techniques. Some of them are performed by a scanner, but it is still necessary to improve the quality of the numerical signal. This paper presents a description of the most important preprocessing techniques which are applied by most current software and is an extension of the most currently reviews presented on this topic.


NMR MRS Nuclear magnetic resonance Magnetic resonance spectroscopy Preprocessing techniques 



This work has been supported by: projects for Young Scientist on Institute of Informatics BKM515/2014/9, BKM515/2015/9 (MS) and partly by infrastructure of POIG.02.03.01- 24-099/13 grant: GCONiI—Upper-Silesian Center for Scientific Computation (AP).


  1. 1.
    Binczyk, F., Tarnawski, R., Polanska, J.: Strategies for optimizing the phase correction algorithms in nuclear magnetic resonance spectroscopy. Biomed. Eng. Online 14(Suppl 2), S5 (2015)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Cabanes, E., Confort-Gouny, S., Le Fur, Y., Simond, G., Cozzone, P. J.: Optimization of residual water signal removal by HLSVD on simulated short echo time proton MR spectra of the human brain. J. Magn. Reson. 150(2), 116–125 (2001). San Diego Calif 1997Google Scholar
  4. 4.
    Cavanagh, J., Fairbrother, W.J., Skelton, A.G., Palmer III, N.J., Rance, M.: Protein NMR Spectroscopy: Principles and Practice. Academic Press (2010)Google Scholar
  5. 5.
    Chen, L., Weng, Z., Goh, L., Garland, M.: An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. J. Magn. Reson. 158(1–2), 164–168 (2002)CrossRefGoogle Scholar
  6. 6.
    Cobas, C., Sykora, S.: Extended DISPersion-Absorption (eDISPA) Approach to Automatic Phasing of HR-NMR Spectra. Mestrelab ResearchGoogle Scholar
  7. 7.
    De Meyer, T., Sinnaeve, D., Van Gasse, B., Rietzschel, E.-R., De Buyzere, M.L., Langlois, M.R., Bekaert, S., Martins, J.C., Van Criekinge, W.: Evaluation of standard and advanced preprocessing methods for the univariate analysis of blood serum 1H-NMR spectra. Anal. Bioanal. Chem. 398(4), 1781–1790 (2010)CrossRefGoogle Scholar
  8. 8.
    Eilers, P.H.C.: Parametric time warping. Anal. Chem. 76(2), 404–411 (2004)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ernst, R.R.: Sensitivity enhancement in magnetic resonance. I. Analysis of the method of time averaging. Rev. Sci. Instrum. 36(12), 1689–1695 (1965)CrossRefGoogle Scholar
  10. 10.
    Friedrichs, M.S.: A model-free algorithm for the removal of baseline artifacts. J. Biomol. NMR 5(2), 147–153 (1995)CrossRefGoogle Scholar
  11. 11.
    Gan, F., Ruan, G., Mo, J.: Baseline correction by improved iterative polynomial fitting with automatic threshold. Chemom. Intell. Lab. Syst. 82(1–2), 59–65 (2006)CrossRefGoogle Scholar
  12. 12.
    GE Healthcare Worldwide.
  13. 13.
    Global Siemens Healthcare.
  14. 14.
    Herring, F.G., Phillips, P.S.: Automatic phase correction in magnetic resonance using DISPA. J. Magn. Reson. (1969) 59(3), 489–496 (1984)Google Scholar
  15. 15.
    Jiru, F.: Introduction to post-processing techniques. Eur. J. Radiol. 67(2), 202–217 (2008)CrossRefGoogle Scholar
  16. 16.
    Jiru, F., et al.: The role of relaxation time corrections for the evaluation of long and short echo time 1H MR spectra of the hippocampus by NUMARIS and LCModel techniques. Magma N.Y. N 16(3), 135–143 (2003)CrossRefGoogle Scholar
  17. 17.
    Keeler, J.: Understanding NMR Spectroscopy, 2nd edn. Wiley-Blackwell, Chichester (2010)Google Scholar
  18. 18.
    Kim, S.B., Wang, Z., Hiremath, B.: A Bayesian approach for the alignment of high-resolution NMR spectra. Ann. Oper. Res. 174(1), 19–32 (2008)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Klose, U.: In vivo proton spectroscopy in presence of eddy currents. Magn. Reson. Med. 14(1), 26–30 (1990)CrossRefGoogle Scholar
  20. 20.
    Kreis, R.: Quantitative localized 1H MR spectroscopy for clinical use. Prog. Nucl. Magn. Reson. Spectrosc. 31(2–3), 155–195 (1997)CrossRefGoogle Scholar
  21. 21.
    Liland, K.H., Almoy, T., Mevik, B.-H.: Optimal choice of baseline correction for multivariate calibration of spectra. Appl. Spectrosc. 64(9), 1007–1016 (2010)CrossRefGoogle Scholar
  22. 22.
    Mitchell, J., Chandrasekera, T.C., Gladden, L.F.: Obtaining true transverse relaxation time distributions in high-field NMR measurements of saturated porous media: Removing the influence of internal gradients. J. Chem. Phys. 132(24), 244705 (2010)CrossRefGoogle Scholar
  23. 23.
    Philips Healthcare.
  24. 24.
    Poullet, J.-B.: Quantification and Classification of Magnetic Resonance Spectroscopic Data For Brain Tumor Diagnosis. Katholic University of Leuven (2008)Google Scholar
  25. 25.
    Poullet, J.-B., Sima, D.M., Van Huffel, S.: MRS signal quantitation: a review of time- and frequency-domain methods. J. Magn. Reson. 195(2), 134–144 (2008)CrossRefGoogle Scholar
  26. 26.
    Reynolds, G., Wilson, M., Peet, A., Arvanitis, T.N.: An algorithm for the automated quantitation of metabolites in in vitro NMR signals. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 56(6), 1211–1219 (2006)CrossRefGoogle Scholar
  27. 27.
    Sava, A.R.C.: Signal Processing and Classification for Magnetic Resonance Spectroscopic Data with Clinical Applications. Katholic University of Leuven (2011)Google Scholar
  28. 28.
    Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36(8), 1627–1639 (1964)CrossRefGoogle Scholar
  29. 29.
    Seeger, U., Mader, I., Nagele, T., Grodd, W., Lutz, O., Klose, U.: Reliable detection of macromolecules in single-volume 1H NMR spectra of the human brain. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 45(6), 948–954 (2001)CrossRefGoogle Scholar
  30. 30.
    Skorupa, A., Wicher, M., Banasik, T., Jamroz, E., Paprocka, J., Kieltyka, A., Sokol, M., Konopka, M.: Four-and-one-half years experience in monitoring of reproducibility of an MR spectroscopy system-application of in vitro results to interpretation of in vivo data. J. Appl. Clin. Med. Phys. Am. Coll. Med. Phys. 15(3), 4754 (2014)Google Scholar
  31. 31.
    Staab, J.M., O’Connell, T.M., Gomez, S.M.: Enhancing metabolomic data analysis with progressive consensus alignment of NMR spectra (PCANS). BMC Bioinform. 11(1), 123 (2010)CrossRefGoogle Scholar
  32. 32.
    Staniszewski, M., Binczyk, F., Skorupa, A., Boguszewicz, L., Sokol, M., Polanska, J., Polanski, A.: Comparison of black box implementations of two algorithms of processing of NMR spectra. In: Gaussian Mixture Model and Singular Value Decomposition. BIOSTEC, Lisbon (2015)Google Scholar
  33. 33.
    Staniszewski, M., Skorupa, A., Boguszewicz, L., Sokol, M., Polanski, A.: Reiteration of Hankel singular value decomposition for modeling of complex-valued signal. In: ICNAAM, Rhodes (2015)Google Scholar
  34. 34.
  35. 35.
    Trickett, S.: F-xy Cadzow noise suppression. SEG Tech. Program Expanded Abs. 27(1) (2008)Google Scholar
  36. 36.
    Vanhamme, L., Fierro, R.D., Van Huffel, S., de Beer, R.: Fast removal of residual water in proton spectra. J. Magn. Reson. 132(2), 197–203 (1998). San Diego Calif 1997Google Scholar
  37. 37.
  38. 38.
    Wilson, M., Reynolds, G., Kauppinen, R.A., Arvanitis, T.N., Peet, A.C.: A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 65(1), 1–12 (2011)CrossRefGoogle Scholar
  39. 39.
    Wong, J.W.H., Cagney, G., Cartwright, H.M.: SpecAlign-processing and alignment of mass spectra datasets. Bioinform. Oxf. Engl. 21(9), 2088–2090 (2005)CrossRefGoogle Scholar
  40. 40.
    Wong, J.W.H., Durante, C., Cartwright, H.M.: Application of fast Fourier transform cross-correlation for the alignment of large chromatographic and spectral datasets. Anal. Chem. 77(17), 5655–5661 (2005)CrossRefGoogle Scholar
  41. 41.
    Worley, B., Powers, R.: Simultaneous phase and scatter correction for NMR datasets. Chemom. Intell. Lab. Syst. 131, 1–6 (2014)CrossRefGoogle Scholar
  42. 42.
    Wu, W., Daszykowski, M., Walczak, B., Sweatman, B.C., Connor, S.C., Haselden, J.N., Crowther, D.J., Gill, R.W., Lutz, M.W.: Peak alignment of urine NMR spectra using fuzzy warping. J. Chem. Inf. Model. 46(2), 863–875 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michal Staniszewski
    • 1
  • Agnieszka Skorupa
    • 2
  • Lukasz Boguszewicz
    • 2
  • Maria Sokol
    • 2
  • Andrzej Polanski
    • 1
  1. 1.Faculty of Automatic Control, Electronics and Computer Science, Institute of InformaticsSilesian University of TechnologyGliwicePoland
  2. 2.Department of Medical PhysicsMaria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice BranchGliwicePoland

Personalised recommendations