Advertisement

The Fast Matching Algorithm for Rectified Stereo Images

  • Pawel PopielskiEmail author
  • Robert Koprowski
  • Zygmunt Wróbel
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 471)

Abstract

In their research, the authors focus on the rapid methods for matching rectified images which can be readily implemented on mobile devices. First, the new method for matching images performs binarization of images and transforms them so that they depict edges. The disparity map is created in accordance with the principle that the correct disparity is the minimum distance of the calculated distances between a point in the left image and all the points in the right image in a given row. The method is illustrated on the basis of the authors’ own images as well as standard images from the Middlebury library. In addition, the method has been compared with well recognized and commonly used algorithms for matching images, namely variational and semi-global methods.

Keywords

Disparity Stereo correspondence Stereovision 

References

  1. 1.
    2006 Stereo datasets with ground truth. http://vision.middlebury.edu/stereo/data/scenes2006/
  2. 2.
    Bouguet, J.-Y.: Complete Camera Calibration Toolbox for Matlab (1999). http://www.vision.caltech.edu/bouguetj/
  3. 3.
    Brown, D.C.: Close-range camera calibration. Photogram. Eng. Remote Sens. 37, 855–866 (1971)Google Scholar
  4. 4.
    D’Apuzzo, N.: Automated photogrammetric measurement of human faces. Int. Arch. Photogramm. Remote Sens. 32(B5), 402–407 (1998)Google Scholar
  5. 5.
    D’Apuzzo, N.: Measurement and modeling of human faces from multi images. Int. Arch. Photogramm. Remote Sens. 34(5), 241–246 (2002)Google Scholar
  6. 6.
    Fryer, J.G., Brown, D.C.: Lens distortion for close-range photogrammetry. Photogramm. Eng. Rem. S. 52, 51–58 (1986)Google Scholar
  7. 7.
    Golec, J., Ziemka, A., Szczygiel, E., Czechowska, D., Milert, A., Kreska-Korus, A., Golec, E.: Photogrametrical analysis body position in hips osteoarthrosis. Ostry Dyzur. 5, 1–7 (2012)Google Scholar
  8. 8.
    Golec, J., Tomaszewski, K., Maslon, A., Szczygiel, E., Hladki, W., Golec, E.: The assessment of gait symmetry disorders and chosen body posture parameters among patients with polyarticular osteoarthritis. Ostry Dyzur. 6, 91–95 (2013)Google Scholar
  9. 9.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2003)Google Scholar
  10. 10.
    Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: Proceedings of IEEE Computer Society, Conference on Computer Vision and Pattern Recognition. pp. 1106–1112. IEEE Computer Society (1997)Google Scholar
  11. 11.
    Hirschműller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341 (2008)CrossRefGoogle Scholar
  12. 12.
    Kraus, K.: Photogrammetry: Geometry from Images and Laser Scans. Walter de Gruyter (2007)Google Scholar
  13. 13.
    Mitchell, H.L.: Applications of digital photogrammetry to medical investigations. ISPRS J. Photogramm. Remote Sens. 50, 27–36 (1995)CrossRefGoogle Scholar
  14. 14.
    Mitchell, H.L., Newton, I.: Medical photogrammetric measurement: overview and prospects. ISPRS J. Photogramm. Remote Sens. 56, 286–294 (2002)CrossRefGoogle Scholar
  15. 15.
    Otsu, N.: Threshold selection method from grey-level histograms. IEEE Trans. Syst. Man Cybern. SMC-9, 62–66 (1979)Google Scholar
  16. 16.
    Patias, P.: Medical imaging challenges photogrammetry. Virtual Prototyp. Bio Manuf. Med. Appl. 56, 45–66 (2008)CrossRefGoogle Scholar
  17. 17.
    Ponce, J., Forsyth, D.: Computer vision: a modern approach (2012)Google Scholar
  18. 18.
    Popielski, P., Wróbel, Z.: An attempt to optimize the process of automatic point matching for homogeneous surface objects. Arch. Fotogram. Kartogr. i Teledetekcji. 22, 351–361 (2011)Google Scholar
  19. 19.
    Popielski, P., Wróbel, Z.: The Feature Detection on the Homogeneous Surfaces with Projected Pattern. Lecture Notes in Computer Science, vol. 118–128. Springer, Berlin Heidelberg (2012)Google Scholar
  20. 20.
    Popielski, P., Wróbel, Z., Koprowski, R.: The effectiveness of matching methods for rectified images. In: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013. pp. 479–489. Advances in Intelligent Systems and Computing, Springer International Publishing (2013)Google Scholar
  21. 21.
    Popielski, P., Wróbel, Z., Koprowski, R.: Object Detail Correspondence Problem in Stereovision. Advances in Intelligent Systems and Computing, vol. 3, pp. 209–222, Springer International Publishing (2014)Google Scholar
  22. 22.
    Ralli, J., Díaz, J., Ros, E.: Spatial and temporal constraints in variational correspondence methods. Mach. Vis. Appl. 24, 275–287 (2011)CrossRefGoogle Scholar
  23. 23.
    Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Shapiro, L., Stockman, G.: Comput. Vis. (2001)Google Scholar
  25. 25.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. Proc. Seventh IEEE Int. Conf. Comput. Vis. 1, 0–7 (1999)Google Scholar
  26. 26.
    Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1330–1334 (2000)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pawel Popielski
    • 1
    Email author
  • Robert Koprowski
    • 1
  • Zygmunt Wróbel
    • 1
  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland

Personalised recommendations