Monoclonal Antibodies in Pediatric Acute Lymphoblastic Leukemia

  • Christiane Chen-SantelEmail author


In 1975 Köhler and Milstein developed the first monoclonal antibody (moAb) by fusion of murine myeloma cells with B cells. Over the past decades several moAbs for different indications have been approved including those for solid tumors as well as hematological malignancies. They are effective directly, via antibody-dependent cell cytotoxicity or via complement-mediated cytolysis. In addition to naked monoclonal antibodies targeting tumor antigens several strategies have been developed to improve efficacy of the moAbs including moAb-drug conjugates, moAb-radioisotope conjugates and moAb-T cell conjugates with varying results. Recently moAbs targeting checkpoint inhibitors have been developed and have shown promising results in solid tumors as well as haematological malignancies. These immunotherapies e.g. in combination with standard of care might lead to better and more sustained remission rates. Furthermore the timing of administration of antibodies with or without standard of care might be a useful strategy for the therapy of the patients.


Complete Remission Chronic Lymphocytic Leukemia Leukemic Stem Cell Bispecific Antibody Ligand Programme Cell Death 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I would like to thank Arend von Stackelberg, who introduced me to the exciting world of ALL, the ALL-REZ study center (C. van Schewick, F. Meyr, T. Groeneveld, A. Kretschmann and J. Dobke), Berlin, Germany, and Ansgar Santel for his continuous support.


  1. 1.
    Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Beck A et al. Strategies and challenges for the next generation of therapeutic antibodies. Nat Rev Immunol. 2010;10(5):345–52.PubMedCrossRefGoogle Scholar
  3. 3.
    Beck A, Wurch T, Corvaia N. Therapeutic antibodies and derivatives: from the bench to the clinic. Curr Pharm Biotechnol. 2008;9(6):421–2.PubMedCrossRefGoogle Scholar
  4. 4.
    Reichert JM. Antibodies to watch in 2010. MAbs. 2010;2(1):84–100.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Reichert JM. Marketed therapeutic antibodies compendium. MAbs. 2012;4(3):413–5.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Nelson AL, Reichert JM. Development trends for therapeutic antibody fragments. Nat Biotechnol. 2009;27(4):331–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Storey S. Respiratory syncytial virus market. Nat Rev Drug Discov. 2010;9(1):15–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Higel F et al. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm. 2016;100:94–100.PubMedCrossRefGoogle Scholar
  9. 9.
    Matsuda F et al. The complete nucleotide sequence of the human immunoglobulin heavy chain variable region locus. J Exp Med. 1998;188(11):2151–62.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Vlasak J et al. Identification and characterization of asparagine deamidation in the light chain CDR1 of a humanized IgG1 antibody. Anal Biochem. 2009;392(2):145–54.PubMedCrossRefGoogle Scholar
  11. 11.
    Bowles JA et al. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood. 2006;108(8):2648–54.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Junutula JR et al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008;26(8):925–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Chames P, Baty D. Bispecific antibodies for cancer therapy: the light at the end of the tunnel? MAbs. 2009;1(6):539–47.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Rasmussen SK et al. Manufacture of recombinant polyclonal antibodies. Biotechnol Lett. 2007;29(6):845–52.PubMedCrossRefGoogle Scholar
  15. 15.
    Pedersen MW et al. Sym004: a novel synergistic anti-epidermal growth factor receptor antibody mixture with superior anticancer efficacy. Cancer Res. 2010;70(2):588–97.PubMedCrossRefGoogle Scholar
  16. 16.
    Wurch T et al. Development of novel protein scaffolds as alternatives to whole antibodies for imaging and therapy: status on discovery research and clinical validation. Curr Pharm Biotechnol. 2008;9(6):502–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Gebauer M, Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics. Curr Opin Chem Biol. 2009;13(3):245–55.PubMedCrossRefGoogle Scholar
  18. 18.
    Hochberg J, El-Mallawany NK, Cairo MS. Humoral and cellular immunotherapy in ALLin children, adolescents, and young adults. Clin Lymphoma Myeloma Leuk. 2014;14 Suppl:S6–13.Google Scholar
  19. 19.
    Dalle S et al. Preclinical studies on the mechanism of action and the anti-lymphoma activity of the novel anti-CD20 antibody GA101. Mol Cancer Ther. 2011;10(1):178–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Robert C et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.PubMedCrossRefGoogle Scholar
  21. 21.
    Pfreundschuh M et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–91.PubMedCrossRefGoogle Scholar
  22. 22.
    Feldman AM, Lorell BH, Reis SE. Trastuzumab in the treatment of metastatic breast cancer : anticancer therapy versus cardiotoxicity. Circulation. 2000;102(3):272–4.PubMedCrossRefGoogle Scholar
  23. 23.
    Nadler LM et al. Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res. 1980;40(9):3147–54.PubMedGoogle Scholar
  24. 24.
    Weiner GJ. Building better monoclonal antibody-based therapeutics. Nat Rev Cancer. 2015;15(6):361–70.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dao T, Liu C, Scheinberg DA. Approaching untargetable tumor-associated antigens with antibodies. Oncoimmunology. 2013;2(7):e24678.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Tutt AL et al. Monoclonal antibody therapy of B cell lymphoma: signaling activity on tumor cells appears more important than recruitment of effectors. J Immunol. 1998;161(6):3176–85.PubMedGoogle Scholar
  27. 27.
    Taylor RP. Of mice and mechanisms: identifying the role of complement in monoclonal antibody-based immunotherapy. Haematologica. 2006;91(2):146a.PubMedGoogle Scholar
  28. 28.
    Wang SY, Weiner G. Complement and cellular cytotoxicity in antibody therapy of cancer. Expert Opin Biol Ther. 2008;8(6):759–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Clynes R et al. Fc receptors are required in passive and active immunity to melanoma. Proc Natl Acad Sci U S A. 1998;95(2):652–6.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Pawluczkowycz AW et al. Binding of submaximal C1q promotes complement-dependent cytotoxicity (CDC) of B cells opsonized with anti-CD20 mAbs ofatumumab (OFA) or rituximab (RTX): considerably higher levels of CDC are induced by OFA than by RTX. J Immunol. 2009;183(1):749–58.PubMedCrossRefGoogle Scholar
  31. 31.
    Beum PV et al. Loss of CD20 and bound CD20 antibody from opsonized B cells occurs more rapidly because of trogocytosis mediated by Fc receptor-expressing effector cells than direct internalization by the B cells. J Immunol. 2011;187(6):3438–47.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang SY et al. Depletion of the C3 component of complement enhances the ability of rituximab-coated target cells to activate human NK cells and improves the efficacy of monoclonal antibody therapy in an in vivo model. Blood. 2009;114(26):5322–30.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Pedersen IM et al. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinasedependent mechanism. Blood. 2002;99(4):1314–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Beers SA, Glennie MJ. Neutrophils: “neu players” in antibody therapy? Blood. 2013;122(18):3093–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Hernandez-Ilizaliturri FJ et al. Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin's lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res. 2003;9(16 Pt 1):5866–73.PubMedGoogle Scholar
  36. 36.
    Ai J, Advani A. Current status of antibody therapy in ALL. Br J Haematol. 2015;168(4):471–80.PubMedCrossRefGoogle Scholar
  37. 37.
    Goebeler ME, Bargou R. Blinatumomab: a CD19/CD3 bispecific T cell engager (BiTE) with unique anti-tumor efficacy. Leuk Lymphoma. 2016;57(5):1021–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Raponi S et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma. 2011;52(6):1098–107.PubMedCrossRefGoogle Scholar
  39. 39.
    Morris JC, Waldmann TA. Antibody-based therapy of leukaemia. Expert Rev Mol Med. 2009;11:e29.PubMedCrossRefGoogle Scholar
  40. 40.
    Tedder TF, Poe JC, Haas KM. CD22: a multifunctional receptor that regulates B lymphocyte survival and signal transduction. Adv Immunol. 2005;88:1–50.PubMedCrossRefGoogle Scholar
  41. 41.
    Lejeune FJ. The conquest of melanoma by immunotherapy. Melanoma Res. 2015;25(5):373–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Kantarjian H et al. Inotuzumab ozogamicin, an anti-CD22-calecheamicin conjugate, for refractory and relapsed acute lymphocytic leukaemia: a phase 2 study. Lancet Oncol. 2012;13(4):403–11.PubMedCrossRefGoogle Scholar
  43. 43.
    Kato J et al. Efficacy and toxicity of a CD22-targeted antibody-saporin conjugate in a xenograft model of non-Hodgkin’s lymphoma. Oncoimmunology. 2012;1(9):1469–75.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Dahl J, Marx K, Jabbour E. Inotuzumab ozogamicin in the treatment of acute lymphoblastic leukemia. Expert Rev Hematol. 2016;9(4):329–34.PubMedCrossRefGoogle Scholar
  45. 45.
    Jazirehi AR, Vega MI, Bonavida B. Development of rituximab-resistant lymphoma clones with altered cell signaling and cross-resistance to chemotherapy. Cancer Res. 2007;67(3):1270–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Safdari Y, Ahmadzadeh V, Farajnia S. CD20-targeting in B-cell malignancies: novel prospects for antibodies and combination therapies. Invest New Drugs. 2016;34(4):497–512.Google Scholar
  47. 47.
    Thomas DA et al. Prognostic significance of CD20 expression in adults with de novo precursor B-lineage acute lymphoblastic leukemia. Blood. 2009;113(25):6330–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Dworzak MN et al. CD20 up-regulation in pediatric B-cell precursor acute lymphoblastic leukemia during induction treatment: setting the stage for anti-CD20 directed immunotherapy. Blood. 2008;112(10):3982–8.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Jeha S et al. Prognostic significance of CD20 expression in childhood B-cell precursor acute lymphoblastic leukemia. Blood. 2006;108(10):3302–4.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Borowitz MJ et al. Prognostic significance of fluorescence intensity of surface marker expression in childhood B-precursor acute lymphoblastic leukemia. A Pediatric Oncology Group Study. Blood. 1997;89(11):3960–6.PubMedGoogle Scholar
  51. 51.
    Naithani R et al. CD20 has no prognostic significance in children with precursor B-cell acute lymphoblastic leukemia. Haematologica. 2012;97(9):e31–2.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ou DY, Luo JM, Ou DL. CD20 and outcome of childhood precursor B-cell acute lymphoblastic leukemia: a meta-analysis. J Pediatr Hematol Oncol. 2015;37(3):e138–42.PubMedCrossRefGoogle Scholar
  53. 53.
    Watanabe T et al. CD52 is a novel costimulatory molecule for induction of CD4+ regulatory T cells. Clin Immunol. 2006;120(3):247–59.PubMedCrossRefGoogle Scholar
  54. 54.
    Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sondak VK et al. Ipilimumab. Nat Rev Drug Discov. 2011;10(6):411–2.PubMedCrossRefGoogle Scholar
  56. 56.
    Kantarjian H et al. Monoclonal antibody-based therapies: a new dawn in the treatment of acute lymphoblastic leukemia. J Clin Oncol. 2012;30(31):3876–83.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hu Y et al. Investigation of the mechanism of action of alemtuzumab in a human CD52 transgenic mouse model. Immunology. 2009;128(2):260–70.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Tibes R et al. Activity of alemtuzumab in patients with CD52-positive acute leukemia. Cancer. 2006;106(12):2645–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Angiolillo AL et al. A phase II study of Campath-1H in children with relapsed or refractory acute lymphoblastic leukemia: a Children's Oncology Group report. Pediatr Blood Cancer. 2009;53(6):978–83.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Piccaluga PP et al. Anti-leukemic and anti-GVHD effects of campath-1H in acute lymphoblastic leukemia relapsed after stem-cell transplantation. Leuk Lymphoma. 2004;45(4):731–3.PubMedCrossRefGoogle Scholar
  61. 61.
    Stock W, O’Brien S, Lozanski G, Vij R, Byrd JC, Powell BL, Wetzler M, Sher D, Edwards C, Kelly M, Richards S, Sung C, Malnassy G, Hoke E, Bloomfield CD, Larson RA. Alemtuzumab can be incorporated into front-line therapy of adult acute lymphoblastic leukemia (ALL): final phase I 25 results of a Cancer and Leukemia Group B study (CALGB 10102). Blood. 2009;114(22):838.Google Scholar
  62. 62.
    Stockmeyer B et al. Mechanisms of G-CSF- or GM-CSF-stimulated tumor cell killing by Fc receptor-directed bispecific antibodies. J Immunol Methods. 2001;248(1–2):103–11.PubMedCrossRefGoogle Scholar
  63. 63.
    Gorin NC et al. Administration of alemtuzumab and G-CSF to adults with relapsed or refractory acute lymphoblastic leukemia: results of a phase II study. Eur J Haematol. 2013;91(4):315–21.PubMedGoogle Scholar
  64. 64.
    Nijmeijer BA et al. A mechanistic rationale for combining alemtuzumab and rituximab in the treatment of ALL. Blood. 2010;116(26):5930–40.PubMedCrossRefGoogle Scholar
  65. 65.
    Rossi EA et al. Novel designs of multivalent anti-CD20 humanized antibodies as improved lymphoma therapeutics. Cancer Res. 2008;68(20):8384–92.PubMedCrossRefGoogle Scholar
  66. 66.
    McLaughlin P et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.PubMedCrossRefGoogle Scholar
  67. 67.
    Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med. 2008;359(6):613–26.PubMedCrossRefGoogle Scholar
  68. 68.
    Maloney DG, Smith B, Rose A. Rituximab: mechanism of action and resistance. Semin Oncol. 2002;29(1 Suppl 2):2–9.CrossRefGoogle Scholar
  69. 69.
    Czuczman MS et al. Acquirement of rituximab resistance in lymphoma cell lines is associated with both global CD20 gene and protein down-regulation regulated at the pretranscriptional and posttranscriptional levels. Clin Cancer Res. 2008;14(5):1561–70.PubMedCrossRefGoogle Scholar
  70. 70.
    Hoelzer D, Huttmann A., Kaul F, Irmer S, Jaekel N, Mohren M, Lipp T, Wedelin K, de Valle F, Schmid M, Thiel E, Brueggemann M, Kneba M, Goekbuget N. Immunochemotherapy with rituximab improves molecular CR rate and outcome in CD20+ B-lineage standard and high risk patients; results of 263 CD20+ patients studied prospectively in GMALL study 07/2003. Blood, 2010;116(117).Google Scholar
  71. 71.
    Thomas DA et al. Chemoimmunotherapy with a modified hyper-CVAD and rituximab regimen improves outcome in de novo Philadelphia chromosome-negative precursor Blineage acute lymphoblastic leukemia. J Clin Oncol. 2010;28(24):3880–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Jaime-Perez JC et al. Effectiveness of intrathecal rituximab in patients with acute lymphoblastic leukaemia relapsed to the CNS and resistant to conventional therapy. Br J Haematol. 2009;144(5):794–5.PubMedCrossRefGoogle Scholar
  73. 73.
    Ceppi F et al. Safety and efficacy of intrathecal rituximab in children with B cell lymphoid CD20+ malignancies: an international retrospective study. Am J Hematol. 2016;91(5):486–91.PubMedCrossRefGoogle Scholar
  74. 74.
    Schulz H et al. Intraventricular treatment of relapsed central nervous system lymphoma with the anti-CD20 antibody rituximab. Haematologica. 2004;89(6):753–4.PubMedGoogle Scholar
  75. 75.
    Rubenstein JL et al. Multicenter phase 1 trial of intraventricular immunochemotherapy in recurrent CNS lymphoma. Blood. 2013;121(5):745–51.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kadoch C et al. Complement activation and intraventricular rituximab distribution in recurrent central nervous system lymphoma. Clin Cancer Res. 2014;20(4):1029–41.PubMedCrossRefGoogle Scholar
  77. 77.
    Lim SH et al. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica. 2010;95(1):135–43.PubMedCrossRefGoogle Scholar
  78. 78.
    Teeling JL et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71.PubMedCrossRefGoogle Scholar
  79. 79.
    Li B et al. Characterization of a rituximab variant with potent antitumor activity against rituximab-resistant B-cell lymphoma. Blood. 2009;114(24):5007–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Jabbour E et al. Monoclonal antibodies in acute lymphoblastic leukemia. Blood. 2015;125(26):4010–6.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Radford J et al. Obinutuzumab (GA101) plus CHOP or FC in relapsed/refractory follicular lymphoma: results of the GAUDI study (BO21000). Blood. 2013;122(7):1137–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Awasthi A et al. Obinutuzumab (GA101) compared to rituximab significantly enhances cell death and antibody-dependent cytotoxicity and improves overall survival against CD20(+) rituximab-sensitive/−resistant Burkitt lymphoma (BL) and precursor B-acute lymphoblastic leukaemia (pre-B-ALL): potential targeted therapy in patients with poor risk CD20(+) BL and pre-B-ALL. Br J Haematol. 2015;171(5):763–75.PubMedCrossRefGoogle Scholar
  83. 83.
    Niederfellner G et al. Epitope characterization and crystal structure of GA101 provide insights into the molecular basis for type I/II distinction of CD20 antibodies. Blood. 2011;118(2):358–67.PubMedCrossRefGoogle Scholar
  84. 84.
    Bologna L et al. Mechanism of action of type II, glycoengineered, anti-CD20 monoclonal antibody GA101 in B-chronic lymphocytic leukemia whole blood assays in comparison with rituximab and alemtuzumab. J Immunol. 2011;186(6):3762–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Salles G, Morschhauser F., Lamy T, Milpied N, Thieblemont C, Tilly H, Bieska G, Carlile D, Cartron G. Phase I study of RO5072759 (GA101) in patients with relapsed/refractory CD20+ Non-Hodgkin Lymphoma (NHL). Blood. 2009;114(1704).Google Scholar
  86. 86.
    Radford J, Davies A, Cartron G, Morschhauser F, Salles GA, Marcus RE, Wenger MK, Asikanius EL, Wassner-Fritsch EL, Vitolo U. Obinutuzumab (GA101) in combination with FC or CHOP in patients with relapsed or refractory follicular lymphomab: final results of the phase I GAUDI study (BO201000). Blood. 2011;118(21):270.Google Scholar
  87. 87.
    Golay J et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013;122(20):3482–91.PubMedCrossRefGoogle Scholar
  88. 88.
    Heinrich DA et al. Differential regulation patterns of the anti-CD20 antibodies obinutuzumab and rituximab in mantle cell lymphoma. Br J Haematol. 2015;168(4):606–10.PubMedCrossRefGoogle Scholar
  89. 89.
    Mossner E et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115(22):4393–402.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Cartron G et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.PubMedCrossRefGoogle Scholar
  91. 91.
    Negrea GO et al. Subcutaneous injections of low-dose veltuzumab (humanized anti-CD20 antibody) are safe and active in patients with indolent non-Hodgkin’s lymphoma. Haematologica. 2011;96(4):567–73.PubMedCrossRefGoogle Scholar
  92. 92.
    Christian BA et al. The combination of milatuzumab, a humanized anti-CD74 antibody, and veltuzumab, a humanized anti-CD20 antibody, demonstrates activity in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Br J Haematol. 2015;169(5):701–10.PubMedCrossRefGoogle Scholar
  93. 93.
    Nitschke L. CD22 and Siglec-G: B-cell inhibitory receptors with distinct functions. Immunol Rev. 2009;230(1):128–43.PubMedCrossRefGoogle Scholar
  94. 94.
    Wayne AS et al. Anti-CD22 immunotoxin RFB4(dsFv)-PE38 (BL22) for CD22-positive hematologic malignancies of childhood: preclinical studies and phase I clinical trial. Clin Cancer Res. 2010;16(6):1894–903.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Carnahan J et al. Epratuzumab, a CD22-targeting recombinant humanized antibody with a different mode of action from rituximab. Mol Immunol. 2007;44(6):1331–41.PubMedCrossRefGoogle Scholar
  96. 96.
    Advani AS. New immune strategies for the treatment of acute lymphoblastic leukemia: antibodies and chimeric antigen receptors. Hematol Am Soc Hematol Educ Program. 2013;2013:131–7.Google Scholar
  97. 97.
    Raetz EA et al. Chemoimmunotherapy reinduction with epratuzumab in children with acute lymphoblastic leukemia in marrow relapse: a Children’s Oncology Group Pilot Study. J Clin Oncol. 2008;26(22):3756–62.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Raetz EA, Bhatla T. Where do we stand in the treatment of relapsed acute lymphoblastic leukemia? Hematol Am Soc Hematol Educ Program. 2012;2012:129–36.Google Scholar
  99. 99.
    Advani A, Gundacker HL, Sala-Torra OL, Radich J, Lai R, Slovak ML, Lancet JE, Coutre S, Stuart KR, Mims MP, Stiff P, Appelbaum FR. Southwest Oncology Group Study S0530: a phase 2 trial of clofarabine/cytarabine for relapsed/refractory acute lymphoblastic leukemia. Blood. 2009;114(22):3094.Google Scholar
  100. 100.
    Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008;8(6):473–80.PubMedCrossRefGoogle Scholar
  101. 101.
    Feld J et al. Linked-in: design and efficacy of antibody drug conjugates in oncology. Oncotarget. 2013;4(3):397–412.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ghetie V, Vitetta E. Immunotoxins in the therapy of cancer: from bench to clinic. Pharmacol Ther. 1994;63(3):209–34.PubMedCrossRefGoogle Scholar
  103. 103.
    Kupchan SM et al. Maytansine, a novel antileukemic ansa macrolide from Maytenus ovatus. J Am Chem Soc. 1972;94(4):1354–6.PubMedCrossRefGoogle Scholar
  104. 104.
    Hinman LM et al. Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res. 1993;53(14):3336–42.PubMedGoogle Scholar
  105. 105.
    Mathur R, Weiner GJ. Picking the optimal target for antibody-drug conjugates. Am Soc Clin Oncol Educ Book. 2013. doi: 10.1200/EdBook_AM.2013.33.e103.
  106. 106.
    Shen BQ et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat Biotechnol. 2012;30(2):184–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Kreitman RJ, Pastan I. Antibody fusion proteins: anti-CD22 recombinant immunotoxin moxetumomab pasudotox. Clin Cancer Res. 2011;17(20):6398–405.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Mussai F et al. Cytotoxicity of the anti-CD22 immunotoxin HA22 (CAT-8015) against paediatric acute lymphoblastic leukaemia. Br J Haematol. 2010;150(3):352–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Wei H et al. Immunotoxin resistance via reversible methylation of the DPH4 promoter is a unique survival strategy. Proc Natl Acad Sci U S A. 2012;109(18):6898–903.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    DiJoseph JF et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103(5):1807–14.PubMedCrossRefGoogle Scholar
  111. 111.
    Shor B, Gerber HP, Sapra P. Preclinical and clinical development of inotuzumabozogamicin in hematological malignancies. Mol Immunol. 2015;67(2 Pt A):107–16.PubMedCrossRefGoogle Scholar
  112. 112.
    Portell CA, Advani AS. Novel targeted therapies in acute lymphoblastic leukemia. Leuk Lymphoma. 2014;55(4):737–48.PubMedCrossRefGoogle Scholar
  113. 113.
    de Vries JF et al. The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leukemia. 2012;26(2):255–64.PubMedCrossRefGoogle Scholar
  114. 114.
    Dijoseph JF et al. Therapeutic potential of CD22-specific antibody-targeted chemotherapy using inotuzumab ozogamicin (CMC-544) for the treatment of acute lymphoblastic leukemia. Leukemia. 2007;21(11):2240–5.PubMedCrossRefGoogle Scholar
  115. 115.
    DiJoseph JF et al. Potent and specific antitumor efficacy of CMC-544, a CD22-targeted immunoconjugate of calicheamicin, against systemically disseminated B-cell lymphoma. Clin Cancer Res. 2004;10(24):8620–9.PubMedCrossRefGoogle Scholar
  116. 116.
    Takeshita A et al. CMC-544 (inotuzumab ozogamicin), an anti-CD22 immuno-conjugate of calicheamicin, alters the levels of target molecules of malignant B-cells. Leukemia. 2009;23(7):1329–36.PubMedCrossRefGoogle Scholar
  117. 117.
    Advani A et al. Safety, pharmacokinetics, and preliminary clinical activity of inotuzumab ozogamicin, a novel immunoconjugate for the treatment of B-cell non-Hodgkin's lymphoma: results of a phase I study. J Clin Oncol. 2010;28(12):2085–93.PubMedCrossRefGoogle Scholar
  118. 118.
    Kantarjian H et al. Results of inotuzumab ozogamicin, a CD22 monoclonal antibody, in refractory and relapsed acute lymphocytic leukemia. Cancer. 2013;119(15):2728–36.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Morley NJ, Marks DI. Inotuzumab ozogamicin in the management of acute lymphoblastic leukaemia. Expert Rev Anticancer Ther. 2016;16(2):159–64.PubMedCrossRefGoogle Scholar
  120. 120.
    Fayad L et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase I/II study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. J Clin Oncol. 2013;31(5):573–83.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Jabbour E, O'Brien S, Sasaki K, Thomas DA, Garcia-Manero G, Ravandi F, Borthakur G, Jain N, Konopleva M, Jacob J, Garris R, Cortes JE, Kantarjian H. Frontline Inotuzumab ozogamicin in combination with low-intensity chemotherapy (mini-hyper-CVD) for older patients with acute lymphoblastic leukemia (ALL). Blood. 2015;126(23):83.Google Scholar
  122. 122.
    Sasaki K, Kantarjian HM, O'Brien S, Thomas DA, Ravandi F, Garcia-Manero G, Kadia T, Jain N, Konopleva M, Estrov Z, Takahashi K, Khouri MR, Jacob J, Garris R, Cortes JE, Jabbour E. Salvage chemotherapy with Inotuzumab ozogamicin (INO) combined with min-hyper-CVD for adult patients with relapsed/refractory (R/R) acute lymphoblastic leukemia (ALL). Blood. 2015;126(23):3721.Google Scholar
  123. 123.
    DeAngelo A, Stelljes M, Martinelli G, et al. Efficacy and safety of inotuzumab ozogamizin (INO) vs. standard of care (SOC) in salvage 1 or 2 in patients with acute lymphoblastic leukemia (ALL): an ongoing global phase 3 study. Haematologica. 2015;100(S1). Abstract #LB2073.Google Scholar
  124. 124.
    Advani A, Stein AS, Kantarjian HM, Shustov AR, DeAngelo DJ, Ananthakrishnan R, Liau K, Vandendries E, Stock W. A phase II study of weekly inotuzumab ozogamicin (InO) in adult patients with CD22-positive acute lyhpmoblastic leukemia (ALL) in second or later salvage. Blood. 2014;124(21):2255.Google Scholar
  125. 125.
    Yilmaz M, Richard S, Jabbour E. The clinical potential of inotuzumab ozogamicin in relapsed and refractory acute lymphocytic leukemia. Ther Adv Hematol. 2015;6(5):253–61.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Obrien S, Thomas D, Jorgensen J, Kebriaei P, Ravandi F, Kwari M, Faderl S, Cortes J, Jabbour E, York S, Garris R, Kantarjian H. Experience with 2 dose schedules of inotuzumab ozogamicin, single dose, and weekly, in refractory-relapsed acute lymphocytic leukemia (ALL). Blood. 2012;120:671.CrossRefGoogle Scholar
  127. 127.
    Blanc V et al. SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Cancer Res. 2011;17(20):6448–58.PubMedCrossRefGoogle Scholar
  128. 128.
    Carol H et al. The anti-CD19 antibody-drug conjugate SAR3419 prevents hematolymphoid relapse postinduction therapy in preclinical models of pediatric acute lymphoblastic leukemia. Clin Cancer Res. 2013;19(7):1795–805.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ribrag V et al. A dose-escalation study of SAR3419, an anti-CD19 antibody maytansinoid conjugate, administered by intravenous infusion once weekly in patients with relapsed/refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2014;20(1):213–20.PubMedCrossRefGoogle Scholar
  130. 130.
    Kantarjian HM et al. A phase II study of coltuximab ravtansine (SAR3419) monotherapy in patients with relapsed or refractory acute lymphoblastic leukemia. Clin Lymphoma Myeloma Leuk. 2016;16(3):139–45.PubMedCrossRefGoogle Scholar
  131. 131.
    Schindler J et al. A phase I study of a combination of anti-CD19 and anti-CD22 immunotoxins (Combotox) in adult patients with refractory B-lineage acute lymphoblastic leukaemia. Br J Haematol. 2011;154(4):471–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Barta SK et al. Synergy of sequential administration of a deglycosylated ricin A chaincontaining combined anti-CD19 and anti-CD22 immunotoxin (Combotox) and cytarabine in a murine model of advanced acute lymphoblastic leukemia. Leuk Lymphoma. 2012;53(10):1999–2003.PubMedCrossRefGoogle Scholar
  133. 133.
    Herrera L et al. Treatment of SCID/human B cell precursor ALL with anti-CD19 and anti- CD22 immunotoxins. Leukemia. 2003;17(2):334–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Liu XY et al. Immunotoxins constructed with chimeric, short-lived anti-CD22 monoclonal antibodies induce less vascular leak without loss of cytotoxicity. MAbs. 2012;4(1):57–68.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Bachanova V et al. Phase I study of a bispecific ligand-directed toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies. Clin Cancer Res. 2015;21(6):1267–72.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Buser A et al. Impaired B-cell reconstitution in lymphoma patients undergoing allogeneic HSCT: an effect of pretreatment with rituximab? Bone Marrow Transplant. 2008;42(7):483–7.PubMedCrossRefGoogle Scholar
  137. 137.
    Pouget JP et al. Clinical radioimmunotherapy – the role of radiobiology. Nat Rev Clin Oncol. 2011;8(12):720–34.PubMedCrossRefGoogle Scholar
  138. 138.
    Gorin JB et al. Antitumor immunity induced after alpha irradiation. Neoplasia. 2014;16(4):319–28.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Kraeber-Bodere F et al. Radioimmunoconjugates for the treatment of cancer. Semin Oncol. 2014;41(5):613–22.PubMedCrossRefGoogle Scholar
  140. 140.
    Morschhauser F et al. High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin's lymphoma. J Clin Oncol. 2010;28(23):3709–16.PubMedCrossRefGoogle Scholar
  141. 141.
    Bodet-Milin C et al. Radioimmunotherapy of B-cell non-Hodgkin’s lymphoma. Front Oncol. 2013;3:177.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Barbet J, Cherel M, Chatal JF. Alpha particles more promising than toxins? Eur J Nucl Med Mol Imaging. 2010;37(5):849–50.PubMedCrossRefGoogle Scholar
  143. 143.
    Chatal JF et al. Different ways to improve the clinical effectiveness of radioimmunotherapy in solid tumors. J Cancer Res Ther. 2009;5(Suppl 1):S36–40.PubMedCrossRefGoogle Scholar
  144. 144.
    Allen BJ. Can alpha-radioimmunotherapy increase efficacy for the systemic control of cancer? Immunotherapy. 2011;3(4):455–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Zalutsky MR et al. Radioimmunotargeting of malignant glioma by monoclonal antibody D2C7 reactive against both wild-type and variant III mutant epidermal growth factor receptors. Nucl Med Biol. 2012;39(1):23–34.PubMedCrossRefGoogle Scholar
  146. 146.
    Chevallier P et al. BCR-ABL1 molecular remission after 90Y-epratuzumab tetraxetan radioimmunotherapy in CD22+ Ph+ B-ALL: proof of principle. Eur J Haematol. 2013;91(6):552–6.PubMedCrossRefGoogle Scholar
  147. 147.
    Chevallier P et al. (90)Y-labelled anti-CD22 epratuzumab tetraxetan in adults with refractory or relapsed CD22-positive B-cell acute lymphoblastic leukaemia: a phase 1 doseescalation study. Lancet Haematol. 2015;2(3):e108–17.PubMedCrossRefGoogle Scholar
  148. 148.
    Bodet-Milin C et al. Radioimmunotherapy for treatment of acute leukemia. Semin Nucl Med. 2016;46(2):135–46.PubMedCrossRefGoogle Scholar
  149. 149.
    Staerz UD, Kanagawa O, Bevan MJ. Hybrid antibodies can target sites for attack by T cells. Nature. 1985;314(6012):628–31.PubMedCrossRefGoogle Scholar
  150. 150.
    Nagorsen D, Baeuerle PA. Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res. 2011;317(9):1255–60.PubMedCrossRefGoogle Scholar
  151. 151.
    Segal DM, Weiner GJ, Weiner LM. Bispecific antibodies in cancer therapy. Curr Opin Immunol. 1999;11(5):558–62.PubMedCrossRefGoogle Scholar
  152. 152.
    Klinger M et al. Harnessing T cells to fight cancer with BiTE((R)) antibody constructs – past developments and future directions. Immunol Rev. 2016;270(1):193–208.PubMedCrossRefGoogle Scholar
  153. 153.
    Loffler A et al. A recombinant bispecific single-chain antibody, CD19 x CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood. 2000;95(6):2098–103.PubMedGoogle Scholar
  154. 154.
    Haas C et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214(6):441–53.PubMedCrossRefGoogle Scholar
  155. 155.
    Brischwein K et al. Strictly target cell-dependent activation of T cells by bispecific singlechain antibody constructs of the BiTE class. J Immunother. 2007;30(8):798–807.PubMedCrossRefGoogle Scholar
  156. 156.
    Dreier T et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer. 2002;100(6):690–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Brandl C et al. The effect of dexamethasone on polyclonal T cell activation and redirected target cell lysis as induced by a CD19/CD3-bispecific single-chain antibody construct. Cancer Immunol Immunother. 2007;56(10):1551–63.PubMedCrossRefGoogle Scholar
  158. 158.
    Kischel R, Hausmann B, Baeuerle P, Kufer P. Effector memory T cells make a ajor contribution to redirected target cell lysis by T cell-engaging BiTE antibody MT110. Cancer Res. 2009;69:3252.Google Scholar
  159. 159.
    Maude SL et al. Managing cytokine release syndrome associated with novel T cellengaging therapies. Cancer J. 2014;20(2):119–22.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Glorius P et al. The novel tribody (CD20)(2)xCD16) efficiently triggers effector clel-mediated lysis of malignant B cells. Leukemia. 2013;27(1):190–201.Google Scholar
  161. 161.
    Holliger P, Prospero T, Winter G. “Diabodies”: small bivalent and bispecific antibody fragments. Proc Natl Acad Sci U S A. 1993;90(14):6444–8.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Moore PA et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117(17):4542–51.PubMedCrossRefGoogle Scholar
  163. 163.
    Kipriyanov SM et al. Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Biol. 1999;293(1):41–56.PubMedCrossRefGoogle Scholar
  164. 164.
    Batlevi CL et al. Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol. 2016;13(1):25–40.PubMedCrossRefGoogle Scholar
  165. 165.
    Reusch U et al. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19(+) tumor cells. MAbs. 2015;7(3):584–604.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Rothe A et al. A phase 1 study of the bispecific anti-CD30/CD16A antibody construct AFM13 in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2015;125(26):4024–31.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Mack M, Riethmuller G, Kufer P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci U S A. 1995;92(15):7021–5.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clin Pharmacol. 2013;5(Suppl 1):5–11.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Offner S et al. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol Immunol. 2006;43(6):763–71.PubMedCrossRefGoogle Scholar
  170. 170.
    Baeuerle PA, Reinhardt C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 2009;69(12):4941–4.PubMedCrossRefGoogle Scholar
  171. 171.
    Topp MS et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood. 2012;120(26):5185–7.PubMedCrossRefGoogle Scholar
  172. 172.
    Nagorsen D et al. Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk Lymphoma. 2009;50(6):886–91.PubMedCrossRefGoogle Scholar
  173. 173.
    Klinger M et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119(26):6226–33.PubMedCrossRefGoogle Scholar
  174. 174.
    Topp MS et al. Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. J Clin Oncol. 2011;29(18):2493–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Dreier T et al. T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19-/CD3- bispecific single-chain antibody construct. J Immunol. 2003;170(8):4397–402.PubMedCrossRefGoogle Scholar
  176. 176.
    Wu B, Hijazi Y, Wolf A, Brandl C, Sun Y-N, Yhu M. Pharmacokinetics (PK) of blinatumomab and its clinical implications. J Clin Oncol. 2013;31(15 suppl):3048. 31Google Scholar
  177. 177.
    Nagorsen D et al. Blinatumomab: a historical perspective. Pharmacol Ther. 2012;136(3):334–42.PubMedCrossRefGoogle Scholar
  178. 178.
    Bargou R et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321(5891):974–7.PubMedCrossRefGoogle Scholar
  179. 179.
    Goekbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Havelange V, Buss EC, Faul C, Bruggemann M, Ganser A, Stieglmaier J, Wessels H, Haddad V, Zugmaier G, Nagorsen D, Bargou RC. BLAST: a confirmatory, single-arm, phase 2 study of blinatumomab, a bispecific T-cell engager (BiTE) antibody construct, in patients with minimal residual disease B-precursor acute lymphoblastic leukemia (ALL). Blood. 2014;124(21):379.Google Scholar
  180. 180.
    Topp MS et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory Bprecursor acute lymphoblastic leukemia. J Clin Oncol. 2014;32(36):4134–40.PubMedCrossRefGoogle Scholar
  181. 181.
    Zugmaier G et al. Long-term survival and T-cell kinetics in relapsed/refractory ALL patients who achieved MRD response after blinatumomab treatment. Blood. 2015;126(24):2578–84.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Handgretinger R et al. Complete remission after blinatumomab-induced donor T-cell activation in three pediatric patients with post-transplant relapsed acute lymphoblastic leukemia. Leukemia. 2011;25(1):181–4.PubMedCrossRefGoogle Scholar
  183. 183.
    Topp MS et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16(1):57–66.PubMedCrossRefGoogle Scholar
  184. 184.
    Buie LW et al. Blinatumomab: a first-in-class bispecific T-cell engager for precursor B-cell acute lymphoblastic leukemia. Ann Pharmacother. 2015;49(9):1057–67.PubMedCrossRefGoogle Scholar
  185. 185.
    Schlegel P et al. Pediatric posttransplant relapsed/refractory B-precursor acute lymphoblastic leukemia shows durable remission by therapy with the T-cell engaging bispecific antibody blinatumomab. Haematologica. 2014;99(7):1212–9.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    von Stackelberg A, Zugmaier G, Handgretinger R, Locatelli F, Rizzari C, Trippett TM, Borkhardt A, Rheingold SR, Bader P, Bhojwani D, Cooper TM, DuBois SG, O'Brien MM, Zwaan CM, Holland C, Mergen N, Fischer A, Zhu M, Hijazi Y, Whitlock J, Gore L. A phase 1/2 study of blinatumomab in pediatric patients with relapsed/refractory B-cell precursor acute lymphoblastic leukemia. Blood. 2013;122(21):70.Google Scholar
  187. 187.
    Kaplan JB, Grischenko M, Giles FJ. Blinatumomab for the treatment of acute lymphoblastic leukemia. Investig New Drugs. 2015;33(6):1271–9.CrossRefGoogle Scholar
  188. 188.
    Barrett DM, Teachey DT, Grupp SA. Toxicity management for patients receiving novel T-cell engaging therapies. Curr Opin Pediatr. 2014;26(1):43–9.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Lee DW et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967):517–28.PubMedCrossRefGoogle Scholar
  190. 190.
    Hijazi Y, Klinger M, Schub A, Wu B, Zhu M, Kufer P, Wolf A, Nagorsen D. Blinatumomab exposure and pharmacodynamic response in patients with non-Hodgkin lymphoma (NHL). J Clin Oncol. 2013;31(15 suppl):3051.Google Scholar
  191. 191.
    Zugmaier G et al. Long-term follow-up of serum immunoglobulin levels in blinatumomabtreated patients with minimal residual disease-positive B-precursor acute lymphoblastic leukemia. Blood Cancer J. 2014;4:244.PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Duell J, Dittrich M, Bedke T, Mueller T, Rasche L, Dandekar T, Einsele H, Topp MS. Crucial role of regulatory T cells in predicting the outcome of the T cell engaging antibody blinatumomab in relapsed and refractory B precursor ALL patients. Blood. 2014;124(21):2291.Google Scholar
  193. 193.
    d’Argouges S et al. Combination of rituximab with blinatumomab (MT103/MEDI-538), a T cell-engaging CD19-/CD3-bispecific antibody, for highly efficient lysis of human B lymphoma cells. Leuk Res. 2009;33(3):465–73.PubMedCrossRefGoogle Scholar
  194. 194.
    Sun LL et al. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med. 2015;7(287):287ra70.PubMedCrossRefGoogle Scholar
  195. 195.
    Tuscano JM et al. The Bs20x22 anti-CD20-CD22 bispecific antibody has more lymphomacidal activity than do the parent antibodies alone. Cancer Immunol Immunother. 2011;60(6):771–80.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Schuster FR et al. Immunotherapy with the trifunctional anti-CD20 x anti-CD3 antibody FBTA05 (Lymphomun) in paediatric high-risk patients with recurrent CD20-positive B cell malignancies. Br J Haematol. 2015;169(1):90–102.PubMedCrossRefGoogle Scholar
  197. 197.
    Harjunpaa A et al. Complement activation in circulation and central nervous system after rituximab (anti-CD20) treatment of B-cell lymphoma. Leuk Lymphoma. 2001;42(4):731–8.PubMedCrossRefGoogle Scholar
  198. 198.
    Iwamoto S et al. Flow cytometric analysis of de novo acute lymphoblastic leukemia in childhood: report from the Japanese Pediatric Leukemia/Lymphoma Study Group. Int J Hematol. 2011;94(2):185–92.PubMedCrossRefGoogle Scholar
  199. 199.
    Coustan-Smith E et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2):147–56.PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Aruffo A, Seed B. Molecular cloning of two CD7 (T-cell leukemia antigen) cDNAs by a COS cell expression system. EMBO J. 1987;6(11):3313–6.PubMedPubMedCentralGoogle Scholar
  201. 201.
    Sempowski GD et al. Structure and function of the CD7 molecule. Crit Rev Immunol. 1999;19(4):331–48.PubMedGoogle Scholar
  202. 202.
    Chabannon C, Wood P, Torok-Storb B. Expression of CD7 on normal human myeloid progenitors. J Immunol. 1992;149(6):2110–3.PubMedGoogle Scholar
  203. 203.
    Rabinowich H et al. Expression and function of CD7 molecule on human natural killer cells. J Immunol. 1994;152(2):517–26.PubMedGoogle Scholar
  204. 204.
    Foon KA, Todd 3rd RF. Immunologic classification of leukemia and lymphoma. Blood. 1986;68(1):1–31.PubMedGoogle Scholar
  205. 205.
    Miwa H, Nakase K, Kita K. Biological characteristics of CD7(+) acute leukemia. Leuk Lymphoma. 1996;21(3–4):239–44.PubMedGoogle Scholar
  206. 206.
    Reinhold U et al. CD7-negative T cells represent a separate differentiation pathway in a subset of post-thymic helper T cells. Immunology. 1996;89(3):391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Liu TY et al. Loss of CD7, independent of galectin-3 expression, implies a worse prognosis in adult T-cell leukaemia/lymphoma. Histopathology. 2009;54(2):214–20.PubMedCrossRefGoogle Scholar
  208. 208.
    Fukumori T et al. CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Res. 2003;63(23):8302–11.PubMedGoogle Scholar
  209. 209.
    Hoyer KK et al. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol. 2004;164(3):893–902.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Yang RY, Hsu DK, Liu FT. Expression of galectin-3 modulates T-cell growth and apoptosis. Proc Natl Acad Sci U S A. 1996;93(13):6737–42.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Fishwild DM et al. Efficacy of an anti-CD7-ricin A chain immunoconjugate in a novel murine model of human T-cell leukemia. Cancer Res. 1992;52(11):3056–62.PubMedGoogle Scholar
  212. 212.
    Flavell DJ et al. Comparison of the potency and therapeutic efficacy of the anti-CD7 immunotoxin HB2-saporin constructed with one or two saporin moieties per immunotoxin molecule. Br J Cancer. 1997;75(7):1035–43.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Frankel AE et al. Therapy of patients with T-cell lymphomas and leukemias using an anti- CD7 monoclonal antibody-ricin A chain immunotoxin. Leuk Lymphoma. 1997;26(3–4):287–98.PubMedCrossRefGoogle Scholar
  214. 214.
    Soler-Rodriguez AM et al. Ricin A-chain and ricin A-chain immunotoxins rapidly damage human endothelial cells: implications for vascular leak syndrome. Exp Cell Res. 1993;206(2):227–34.PubMedCrossRefGoogle Scholar
  215. 215.
    Hamers-Casterman C et al. Naturally occurring antibodies devoid of light chains. Nature. 1993;363(6428):446–8.PubMedCrossRefGoogle Scholar
  216. 216.
    Cortez-Retamozo V et al. Efficient cancer therapy with a nanobody-based conjugate. Cancer Res. 2004;64(8):2853–7.PubMedCrossRefGoogle Scholar
  217. 217.
    Heukers R et al. Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles. Biomaterials. 2014;35(1):601–10.PubMedCrossRefGoogle Scholar
  218. 218.
    Tang J, et al. Novel CD7-specific nanobody-based immunotoxins potently enhanced apoptosis of CD7-positive malignant cells. Oncotarget. 2016;7(23):34070–83.Google Scholar
  219. 219.
    Kipps TJ. The CD5 B cell. Adv Immunol. 1989;47:117–85.PubMedCrossRefGoogle Scholar
  220. 220.
    Subira D et al. Brief report. CD19/CD5 acute lymphoblastic leukemia. Med Pediatr Oncol. 1998;31(6):551–2.PubMedCrossRefGoogle Scholar
  221. 221.
    Van Vlierberghe P et al. ETV6 mutations in early immature human T cell leukemias. J Exp Med. 2011;208(13):2571–9.PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Chopra A et al. Immunophenotypic analysis of T-acute lymphoblastic leukemia. A CD5- based ETP-ALL perspective of non-ETP T-ALL. Eur J Haematol. 2014;92(3):211–8.PubMedCrossRefGoogle Scholar
  223. 223.
    Zhu DM et al. Mechanisms of cellular avidity regulation in CD2-CD58-mediated T cell adhesion. ACS Chem Biol. 2006;1(10):649–58.PubMedCrossRefGoogle Scholar
  224. 224.
    Kozarsky KF et al. An anti-CD2 monoclonal antibody that both inhibits and stimulates T cell activation recognizes a subregion of CD2 distinct from known ligand-binding sites. Cell Immunol. 1993;150(2):235–46.PubMedCrossRefGoogle Scholar
  225. 225.
    Ding Y et al. A novel murine model for the assessment of human CD2-related reagents in vivo. J Immunol. 1996;157(5):1863–9.PubMedGoogle Scholar
  226. 226.
    Teh SJ et al. CD2 regulates the positive selection and function of antigen-specific CD4- CD8+ T cells. Blood. 1997;89(4):1308–18.PubMedGoogle Scholar
  227. 227.
    Zhang Z et al. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD2 monoclonal antibody, MEDI-507. Blood. 2003;102(1):284–8.PubMedCrossRefGoogle Scholar
  228. 228.
    O'Mahony D et al. EBV-related lymphoproliferative disease complicating therapy with the anti-CD2 monoclonal antibody, siplizumab, in patients with T-cell malignancies. Clin Cancer Res. 2009;15(7):2514–22.PubMedCrossRefGoogle Scholar
  229. 229.
    Shields DJ et al. Detection of Epstein-Barr virus in transformations of low-grade B-cell lymphomas after fludarabine treatment. Mod Pathol. 1997;10(11):1151–9.PubMedGoogle Scholar
  230. 230.
    Brochstein JA et al. Phase-1 study of siplizumab in the treatment of pediatric patients with at least grade II newly diagnosed acute graft-versus-host disease. Pediatr Transplant. 2010;14(2):233–41.PubMedCrossRefGoogle Scholar
  231. 231.
    Parish CR. Cancer immunotherapy: the past, the present and the future. Immunol Cell Biol. 2003;81(2):106–13.PubMedCrossRefGoogle Scholar
  232. 232.
    Andersen MH. The targeting of immunosuppressive mechanisms in hematological malignancies. Leukemia. 2014;28(9):1784–92.PubMedCrossRefGoogle Scholar
  233. 233.
    Khalil DN et al. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13(6):394.PubMedCrossRefGoogle Scholar
  234. 234.
    Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev. 2008;224:166–82.PubMedCrossRefGoogle Scholar
  235. 235.
    Bonifaz L et al. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196(12):1627–38.PubMedPubMedCentralCrossRefGoogle Scholar
  236. 236.
    Egen JG, Kuhns MS, Allison JP. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol. 2002;3(7):611–8.PubMedCrossRefGoogle Scholar
  237. 237.
    Ostrov DA et al. Structure of murine CTLA-4 and its role in modulating T cell responsiveness. Science. 2000;290(5492):816–9.PubMedCrossRefGoogle Scholar
  238. 238.
    Quandt D et al. A new role of CTLA-4 on B cells in thymus-dependent immune responses in vivo. J Immunol. 2007;179(11):7316–24.PubMedCrossRefGoogle Scholar
  239. 239.
    Walunas TL et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–13.PubMedCrossRefGoogle Scholar
  240. 240.
    Takahashi T et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–10.PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Matheu MP et al. Imaging regulatory T cell dynamics and CTLA4-mediated suppression of T cell priming. Nat Commun. 2015;6:6219.PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Wing K et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5.PubMedCrossRefGoogle Scholar
  243. 243.
    Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302.PubMedPubMedCentralCrossRefGoogle Scholar
  244. 244.
    Perkins D et al. Regulation of CTLA-4 expression during T cell activation. J Immunol. 1996;156(11):4154–9.PubMedGoogle Scholar
  245. 245.
    Chan DV et al. Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with increased NFAT1 and inhibition of CD4+ proliferation. Genes Immun. 2014;15(1):25–32.PubMedCrossRefGoogle Scholar
  246. 246.
    Greene JL et al. Covalent dimerization of CD28/CTLA-4 and oligomerization of CD80/CD86 regulate T cell costimulatory interactions. J Biol Chem. 1996;271(43):26762–71.PubMedCrossRefGoogle Scholar
  247. 247.
    Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.PubMedCrossRefGoogle Scholar
  248. 248.
    Kwon ED et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci U S A. 1997;94(15):8099–103.PubMedPubMedCentralCrossRefGoogle Scholar
  249. 249.
    Shrikant P, Khoruts A, Mescher MF. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell- and IL-2-dependent mechanism. Immunity. 1999;11(4):483–93.PubMedCrossRefGoogle Scholar
  250. 250.
    Sledzinska A et al. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol. 2015;9(10):1936–65.PubMedCrossRefGoogle Scholar
  251. 251.
    Keir ME et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.PubMedCrossRefGoogle Scholar
  252. 252.
    Freeman GJ et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192(7):1027–34.PubMedPubMedCentralCrossRefGoogle Scholar
  253. 253.
    Blank C et al. Blockade of PD-L1 (B7-H1) augments human tumor-specific T cell responses in vitro. Int J Cancer. 2006;119(2):317–27.PubMedCrossRefGoogle Scholar
  254. 254.
    Bryan LJ, Gordon LI. Blocking tumor escape in hematologic malignancies: the anti-PD- 1 strategy. Blood Rev. 2015;29(1):25–32.PubMedCrossRefGoogle Scholar
  255. 255.
    Inman BA et al. PD-L1 (B7-H1) expression by urothelial carcinoma of the bladder and BCGinduced granulomata: associations with localized stage progression. Cancer. 2007;109(8):1499–505.PubMedCrossRefGoogle Scholar
  256. 256.
    Zhang L et al. Programmed death-ligand 1 (PD-L1) may play a role in malignant glioma infiltration. Med Hypotheses. 2015;85(2):127–9.PubMedCrossRefGoogle Scholar
  257. 257.
    Hamanishi J et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A. 2007;104(9):3360–5.PubMedPubMedCentralCrossRefGoogle Scholar
  258. 258.
    Dong H et al. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365–9.PubMedCrossRefGoogle Scholar
  259. 259.
    Kozako T et al. PD-1/PD-L1 expression in human T-cell leukemia virus type 1 carriers and adult T-cell leukemia/lymphoma patients. Leukemia. 2009;23(2):375–82.PubMedCrossRefGoogle Scholar
  260. 260.
    Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121(5):734–44.PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Tamura H et al. Marrow stromal cells induce B7-H1 expression on myeloma cells, generating aggressive characteristics in multiple myeloma. Leukemia. 2013;27(2):464–72.PubMedCrossRefGoogle Scholar
  262. 262.
    Christiansson L et al. Increased level of myeloid-derived suppressor cells, programmed death receptor ligand 1/programmed death receptor 1, and soluble CD25 in Sokal high risk chronic myeloid leukemia. PLoS ONE. 2013;8(1):e55818.PubMedPubMedCentralCrossRefGoogle Scholar
  263. 263.
    Hatta Y, Koeffler HP. Role of tumor suppressor genes in the development of adult T cell leukemia/lymphoma (ATLL). Leukemia. 2002;16(6):1069–85.PubMedCrossRefGoogle Scholar
  264. 264.
    Brahmer JR et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.PubMedPubMedCentralCrossRefGoogle Scholar
  265. 265.
    Topalian SL et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Berger R et al. Phase I safety and pharmacokinetic study of CT-011, a humanized antibody interacting with PD-1, in patients with advanced hematologic malignancies. Clin Cancer Res. 2008;14(10):3044–51.PubMedCrossRefGoogle Scholar
  267. 267.
    Kwon BS, Weissman SM. cDNA sequences of two inducible T-cell genes. Proc Natl Acad Sci U S A. 1989;86(6):1963–7.PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Wolfl M et al. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood. 2007;110(1):201–10.PubMedPubMedCentralCrossRefGoogle Scholar
  269. 269.
    Schmied S et al. Analysis of the functional WT1-specific T-cell repertoire in healthy donors reveals a discrepancy between CD4(+) and CD8(+) memory formation. Immunology. 2015;145(4):558–69.PubMedPubMedCentralCrossRefGoogle Scholar
  270. 270.
    Shuford WW et al. 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med. 1997;186(1):47–55.PubMedPubMedCentralCrossRefGoogle Scholar
  271. 271.
    Kim DH et al. 4-1BB engagement costimulates NKT cell activation and exacerbates NKT cell ligand-induced airway hyperresponsiveness and inflammation. J Immunol. 2008;180(4):2062–8.PubMedCrossRefGoogle Scholar
  272. 272.
    So T, Lee SW, Croft M. Immune regulation and control of regulatory T cells by OX40 and 4-1BB. Cytokine Growth Factor Rev. 2008;19(3–4):253–62.PubMedPubMedCentralCrossRefGoogle Scholar
  273. 273.
    Palma C et al. CD137 and CD137 ligand constitutively coexpressed on human T and B leukemia cells signal proliferation and survival. Int J Cancer. 2004;108(3):390–8.PubMedCrossRefGoogle Scholar
  274. 274.
    Snell LM et al. T-cell intrinsic effects of GITR and 4-1BB during viral infection and cancer immunotherapy. Immunol Rev. 2011;244(1):197–217.PubMedCrossRefGoogle Scholar
  275. 275.
    Wang C et al. Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev. 2009;229(1):192–215.PubMedCrossRefGoogle Scholar
  276. 276.
    Zheng G, Wang B, Chen A. The 4-1BB costimulation augments the proliferation of CD4+CD25+ regulatory T cells. J Immunol. 2004;173(4):2428–34.PubMedCrossRefGoogle Scholar
  277. 277.
    Elpek KG et al. Ex vivo expansion of CD4+CD25+FoxP3+ T regulatory cells based on synergy between IL-2 and 4-1BB signaling. J Immunol. 2007;179(11):7295–304.PubMedCrossRefGoogle Scholar
  278. 278.
    Phan GQ et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyteassociated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003;100(14):8372–7.PubMedPubMedCentralCrossRefGoogle Scholar
  279. 279.
    Zhong RK et al. CTLA-4 blockade by a human MAb enhances the capacity of AML-derived DC to induce T-cell responses against AML cells in an autologous culture system. Cytotherapy. 2006;8(1):3–12.PubMedCrossRefGoogle Scholar
  280. 280.
    Ansell SM et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res. 2009;15(20):6446–53.PubMedPubMedCentralCrossRefGoogle Scholar
  281. 281.
    Bashey A et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood. 2009;113(7):1581–8.PubMedPubMedCentralCrossRefGoogle Scholar
  282. 282.
    Wolchok JD et al. Ipilimumab monotherapy in patients with pretreated advanced melanoma: a randomised, double-blind, multicentre, phase 2, dose-ranging study. Lancet Oncol. 2010;11(2):155–64.PubMedCrossRefGoogle Scholar
  283. 283.
    Powles T et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.PubMedCrossRefGoogle Scholar
  284. 284.
    Vick E, Mahadevan D. Programming the immune checkpoint to treat hematologic malignancies. Expert Opin Investig Drugs. 2016;25(7):755–70.Google Scholar
  285. 285.
    Ohaegbulam KC et al. Human cancer immunotherapy with antibodies to the PD-1 and PDL1 pathway. Trends Mol Med. 2015;21(1):24–33.PubMedCrossRefGoogle Scholar
  286. 286.
    Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what’s here, what’s next? Curr Opin Immunol. 2015;33:23–35.PubMedCrossRefGoogle Scholar
  287. 287.
    Shu CA, Rizvi NA. Into the clinic with Nivolumab and Pembrolizumab. Oncologist. 2016;21(5):527–8.PubMedPubMedCentralCrossRefGoogle Scholar
  288. 288.
    Farooqui MZ et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16(2):169–76.PubMedCrossRefGoogle Scholar
  289. 289.
    Larkin J et al. Combined Nivolumab and ipilimumab or monotherapy in untreated Melanoma. N Engl J Med. 2015;373(1):23–34.PubMedCrossRefGoogle Scholar
  290. 290.
    Green MR et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood. 2010;116(17):3268–77.PubMedPubMedCentralCrossRefGoogle Scholar
  291. 291.
    Yamamoto R et al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood. 2008;111(6):3220–4.PubMedCrossRefGoogle Scholar
  292. 292.
    Wilcox RA et al. B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. Blood. 2009;114(10):2149–58.PubMedPubMedCentralCrossRefGoogle Scholar
  293. 293.
    Andorsky DJ et al. Programmed death ligand 1 is expressed by non-hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res. 2011;17(13):4232–44.PubMedCrossRefGoogle Scholar
  294. 294.
    Dorfman DM et al. Programmed death-1 (PD-1) is a marker of germinal center-associated T cells and angioimmunoblastic T-cell lymphoma. Am J Surg Pathol. 2006;30(7):802–10.PubMedPubMedCentralCrossRefGoogle Scholar
  295. 295.
    Chemnitz JM et al. RNA fingerprints provide direct evidence for the inhibitory role of TGFbeta and PD-1 on CD4+ T cells in Hodgkin lymphoma. Blood. 2007;110(9):3226–33.PubMedCrossRefGoogle Scholar
  296. 296.
    Moskowitz C, Ribrag V, Michot J-M, Martinelli G, Zinzani PL, Gutierrez M, De Maeyer G, Jacob AG, Giallella K, Weimer Anderson J, Derosier M, Wang J, Yang Z, Rubin E, Rose S, Shipp MA, Armand P. PD-1 blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical Hodgkin lymphoma after brentuxiimab vedotin failure: preliminary results from a phase 1b study (keynote-013). Blood. 2014;124(21):290.Google Scholar
  297. 297.
    Lesokhin AM, ANsell SM, Armand P, Scott EC, Halwani A, Gutierrez M, Millenson MM, Cohen AD, Schuster SJ, Lebovic D, Dhodapkar MV, Avigan D, Chapuy B, Ligon AH, Rodig SJ, Cattry D, Zhu L, Grosso JF, Kim SY, Shipp MA, Borrello I, Timmerman J. Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies. Blood. 2014;124(21):291.Google Scholar
  298. 298.
    Brahmer JR et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.PubMedPubMedCentralCrossRefGoogle Scholar
  299. 299.
    Selby M, Engelhardt J, Lu L-S, Quigley M, Wang C, Chen B, Korman AJ. Antitumor activity of concurrent blockade of immune checkpoint molecules CTLA-4 and PD-1 in preclinical models. J Clin Oncol. 2013;31(15 suppl):3061.Google Scholar
  300. 300.
    Hamid O et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44.PubMedPubMedCentralCrossRefGoogle Scholar
  301. 301.
    Hardy B et al. A monoclonal antibody against a human B lymphoblastoid cell line induces tumor regression in mice. Cancer Res. 1994;54(22):5793–6.PubMedGoogle Scholar
  302. 302.
    Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012;24(2):207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  303. 303.
    Infante JR, Powderly JD, Burris HA, Kittaneh M, Houston Grice J, Smothers JF, Brett S, Fleming ME, May R, Marshall S, Devenport M, Pilemer S, Pardoll DM, Chen L, Langermann S, LoRusso P. Clinical and pharmacodynamic (PD) results of a phase I trial with AMP-224 (B7-DC Fc) that binds to the PD-1 receptor. J Clin Oncol. 2013;31(15 suppl):3044.Google Scholar
  304. 304.
    Melero I et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997;3(6):682–5.PubMedCrossRefGoogle Scholar
  305. 305.
    Wilcox RA et al. Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol. 2002;169(8):4230–6.PubMedCrossRefGoogle Scholar
  306. 306.
    Shindo Y et al. Combination immunotherapy with 4-1BB activation and PD-1 blockade enhances antitumor efficacy in a mouse model of subcutaneous tumor. Anticancer Res. 2015;35(1):129–36.PubMedGoogle Scholar
  307. 307.
    Chen S et al. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res. 2015;3(2):149–60.PubMedCrossRefGoogle Scholar
  308. 308.
    Jensen BA et al. The availability of a functional tumor targeting T-cell repertoire determines the anti-tumor efficiency of combination therapy with anti-CTLA-4 and anti-4- 1BB antibodies. PLoS ONE. 2013;8(6):e66081.PubMedPubMedCentralCrossRefGoogle Scholar
  309. 309.
    Williams EL et al. Immunomodulatory monoclonal antibodies combined with peptide vaccination provide potent immunotherapy in an aggressive murine neuroblastoma model. Clin Cancer Res. 2013;19(13):3545–55.PubMedPubMedCentralCrossRefGoogle Scholar
  310. 310.
    Kohrt HE et al. CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood. 2011;117(8):2423–32.PubMedPubMedCentralCrossRefGoogle Scholar
  311. 311.
    Kohrt HE et al. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Invest. 2012;122(3):1066–75.PubMedPubMedCentralCrossRefGoogle Scholar
  312. 312.
    Chen SH et al. Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation. Mol Ther. 2000;2(1):39–46.PubMedCrossRefGoogle Scholar
  313. 313.
    May Jr KF et al. Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res. 2002;62(12):3459–65.PubMedGoogle Scholar
  314. 314.
    Sznol M, Hodi FS, Margolin K, McDermott DF, Ernstoff MS, Kirkwood JM, Wojtaszek C, Feltquate D, Logan T, Phase I. study of BMS-663513, a fully human anti- CD137 agonist monoclonal antibody, n paitnets (pts) with advanced cancer (CA). J Clin Oncol. 2008;26(15 suppl):3007.CrossRefGoogle Scholar
  315. 315.
    Fisher TS et al. Targeting of 4-1BB by monoclonal antibody PF-05082566 enhances T-cell function and promotes anti-tumor activity. Cancer Immunol Immunother. 2012;61(10):1721–33.PubMedCrossRefGoogle Scholar
  316. 316.
    Gopal AK, Bartlett NL, Levy R, Houot R, Smith SD, Segal NH, Thall AD, Mugundu G, Huang B, Davis C, Kohrt HE. A phase I study of PF-05082566 (anti-4-1BB) + rituximab in patients with CD20+ NHL. J Clin Oncol. 2015;33(15 suppl):3004.Google Scholar
  317. 317.
    Gros A et al. PD-1 identifies the patient-specific CD8(+) tumor-reactive repertoire infiltrating human tumors. J Clin Invest. 2014;124(5):2246–59.PubMedPubMedCentralCrossRefGoogle Scholar
  318. 318.
    Kohrt HE et al. Combination strategies to enhance antitumor ADCC. Immunotherapy. 2012;4(5):511–27.PubMedPubMedCentralCrossRefGoogle Scholar
  319. 319.
    Dubrot J et al. Treatment with anti-CD137 mAbs causes intense accumulations of liver T cells without selective antitumor immunotherapeutic effects in this organ. Cancer Immunol Immunother. 2010;59(8):1223–33.PubMedCrossRefGoogle Scholar
  320. 320.
    Ascierto PA et al. Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol. 2010;37(5):508–16.PubMedCrossRefGoogle Scholar
  321. 321.
    Segal NH, Gopal AK, Bhatia S, Kohrt HE, Levy R, Pishvaian MJ, Houot R, Bartlett N, Nghiem P, Kronenberg SA, Thall AD, Mugundu G, Huang B, Davis C. A phase 1 study of PF-05082566 (anti-4-1BB) in patients with advanced cancer. J Clin Oncol. 2014;32(15 suppl):3007.Google Scholar
  322. 322.
    Ishida T et al. CXC chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinicopathological significance for peripheral T-cell lymphoma, unspecified. Clin Cancer Res. 2004;10(16):5494–500.PubMedCrossRefGoogle Scholar
  323. 323.
    Ishida T et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Clin Cancer Res. 2003;9(10 Pt 1):3625–34.PubMedGoogle Scholar
  324. 324.
    Ishida T et al. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30(8):837–42.PubMedCrossRefGoogle Scholar
  325. 325.
    Yonekura K et al. Effect of anti-CCR4 monoclonal antibody (mogamulizumab) on adult Tcell leukemia-lymphoma: cutaneous adverse reactions may predict the prognosis. J Dermatol. 2014;41(3):239–44.PubMedCrossRefGoogle Scholar
  326. 326.
    le Viseur C et al. In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell. 2008;14(1):47–58.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of Pediatric Oncology/Hematology/BMTCharité University, Medicine BerlinBerlinGermany

Personalised recommendations